2026屆上海市普通高中數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2026屆上海市普通高中數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2026屆上海市普通高中數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2026屆上海市普通高中數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2026屆上海市普通高中數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2026屆上海市普通高中數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.北京天壇的圜丘壇為古代祭天的場所,分上、中、下三層,上層中心有一塊圓形石板(稱為天心石),環(huán)繞天心石砌9塊扇面形石板構(gòu)成第一環(huán),向外每環(huán)依次增加9塊,下一層的第一環(huán)比上一層的最后一環(huán)多9塊,向外每環(huán)依次也增加9塊,已知每層環(huán)數(shù)相同,且下層比中層多729塊,則三層共有扇面形石板(不含天心石)()A.3699塊 B.3474塊C.3402塊 D.3339塊2.已知雙曲線的兩個(gè)焦點(diǎn),,是雙曲線上一點(diǎn),且,,則雙曲線的標(biāo)準(zhǔn)方程是()A. B.C. D.3.已知點(diǎn),則滿足點(diǎn)到直線的距離為,點(diǎn)到直線距離為的直線的條數(shù)有()A.1 B.2C.3 D.44.直線與圓相交與A,B兩點(diǎn),則AB的長等于()A3 B.4C.6 D.15.已知橢圓和雙曲線有共同的焦點(diǎn),分別是它們的在第一象限和第三象限的交點(diǎn),且,記橢圓和雙曲線的離心率分別為,則等于()A.4 B.2C.2 D.36.直線的傾斜角為()A.-30° B.60°C.150° D.120°7.已知點(diǎn),在雙曲線上,線段的中點(diǎn),則()A. B.C. D.8.已知數(shù)列是等比數(shù)列,數(shù)列是等差數(shù)列,若,則()A. B.C. D.9.已知橢圓的左、右頂點(diǎn)分別為,上、下頂點(diǎn)分別為.點(diǎn)為上不在坐標(biāo)軸上的任意一點(diǎn),且四條直線的斜率之積大于,則的離心率的取值范圍是()A. B.C. D.10.若圓與直線相切,則()A.3 B.或3C. D.或11.已知為等差數(shù)列,為其前n項(xiàng)和,,則下列和與公差無關(guān)的是()A. B.C. D.12.過拋物線的焦點(diǎn)的直線交拋物線于兩點(diǎn),點(diǎn)是原點(diǎn),若;則的面積為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若,若,則______14.中國三大名樓之一的黃鶴樓因其獨(dú)特的建筑結(jié)構(gòu)而聞名,其外觀有五層而實(shí)際上內(nèi)部有九層,隱喻“九五至尊”之意,為迎接2022年春節(jié)的到來,有網(wǎng)友建議在黃鶴樓內(nèi)部掛燈籠進(jìn)行裝飾,若在黃鶴樓內(nèi)部九層塔樓共掛1533盞燈籠,且相鄰的兩層中,下一層的燈籠數(shù)是上一層燈籠數(shù)的兩倍,則內(nèi)部塔樓的頂層應(yīng)掛______盞燈籠15.曲線在x=1處的切線方程為__________.16.某足球俱樂部選拔青少年隊(duì)員,每人要進(jìn)行3項(xiàng)測試.甲隊(duì)員每項(xiàng)測試通過的概率均為,且不同測試之間相互獨(dú)立,設(shè)他通過的測試項(xiàng)目數(shù)為X,則_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C:短軸長為2,且點(diǎn)在C上(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)設(shè)、為橢圓的左、右焦點(diǎn),過的直線l交橢圓C與A、B兩點(diǎn),若的面積是,求直線l的方程18.(12分)已知直線與直線交于點(diǎn).(1)求過點(diǎn)且平行于直線的直線的方程,并求出兩平行直線間的距離;(2)求過點(diǎn)并且在兩坐標(biāo)軸上的截距互為相反數(shù)的直線的方程.19.(12分)已知等差數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{bn}滿足:點(diǎn)(n,bn)在曲線y=上,a1=b4,___,數(shù)列{}的前n項(xiàng)和為Tn從①S4=20,②S3=2a3,③3a3﹣a5=b2這三個(gè)條件中任選一個(gè),補(bǔ)充到上面問題的橫線上并作答(1)求數(shù)列{an},{bn}的通項(xiàng)公式;(2)是否存在正整數(shù)k,使得Tk>,且bk>?若存在,求出滿足題意的k值;若不存在,請說明理由20.(12分)如圖1,在邊長為4的等邊三角形ABC中,D,E,F(xiàn)分別是AB,AC,BC的中點(diǎn),沿DE把折起,得到如圖2所示的四棱錐.(1)證明:平面.(2)若二面角的大小為60°,求平面與平面的夾角的大小.21.(12分)已知等差數(shù)列中,,前5項(xiàng)的和為,數(shù)列滿足,(1)求數(shù)列,的通項(xiàng)公式;(2)記,求數(shù)列的前n項(xiàng)和22.(10分)設(shè)數(shù)列滿足(1)求的通項(xiàng)公式;(2)記數(shù)列的前項(xiàng)和為,是否存在實(shí)數(shù),使得對任意恒成立.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】第n環(huán)天石心塊數(shù)為,第一層共有n環(huán),則是以9為首項(xiàng),9為公差的等差數(shù)列,設(shè)為的前n項(xiàng)和,由題意可得,解方程即可得到n,進(jìn)一步得到.【詳解】設(shè)第n環(huán)天石心塊數(shù)為,第一層共有n環(huán),則是以9為首項(xiàng),9為公差的等差數(shù)列,,設(shè)為的前n項(xiàng)和,則第一層、第二層、第三層的塊數(shù)分別為,因?yàn)橄聦颖戎袑佣?29塊,所以,即即,解得,所以.故選:C【點(diǎn)晴】本題主要考查等差數(shù)列前n項(xiàng)和有關(guān)的計(jì)算問題,考查學(xué)生數(shù)學(xué)運(yùn)算能力,是一道容易題.2、D【解析】根據(jù)條件設(shè),,由條件求得,即可求得雙曲線方程.【詳解】設(shè),則由已知得,,又,,又,,雙曲線的標(biāo)準(zhǔn)方程為.故選:D3、D【解析】以為圓心,為半徑,為圓心,為半徑分別畫圓,將所求轉(zhuǎn)化為求圓與圓的公切線條數(shù),判斷兩圓的位置關(guān)系,從而得公切線條數(shù).【詳解】以為圓心,為半徑,為圓心,為半徑分別畫圓,如圖所示,由題意,滿足點(diǎn)到直線的距離為,點(diǎn)到直線距離為的直線的條數(shù)即為圓與圓的公切線條數(shù),因?yàn)椋詢蓤A外離,所以兩圓的公切線有4條,即滿足條件的直線有4條.故選:D【點(diǎn)睛】解答本題的關(guān)鍵是將滿足點(diǎn)到直線的距離為,點(diǎn)到直線距離為的直線的條數(shù)轉(zhuǎn)化為圓與圓的公切線條數(shù),從而根據(jù)圓與圓的位置關(guān)系判斷出公切線條數(shù).4、C【解析】根據(jù)弦長公式即可求出【詳解】因?yàn)閳A心到直線的距離為,所以AB的長等于故選:C5、A【解析】設(shè)橢圓的長半軸長為,雙曲線的實(shí)半軸長為,由定義可得,,在中利用余弦定理可得,即可求出結(jié)果.【詳解】設(shè)橢圓的長半軸長為,雙曲線的實(shí)半軸長為,不妨設(shè)在第一象限,根據(jù)橢圓和雙曲線定義,得,,,由可得,又,在中,,即,化簡得,兩邊同除以,得.故選:A.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題考查共焦點(diǎn)的橢圓與雙曲線的離心率問題,解題的關(guān)鍵是利用定義以及焦點(diǎn)三角形的關(guān)系列出齊次方程式進(jìn)行求解.6、C【解析】根據(jù)直線斜率即可得傾斜角.【詳解】設(shè)直線的傾斜角為由已知得,所以直線的斜率,由于,故選:C.7、D【解析】先根據(jù)中點(diǎn)弦定理求出直線的斜率,然后求出直線的方程,聯(lián)立后利用弦長公式求解的長.【詳解】設(shè),,則可得方程組:,兩式相減得:,即,其中因?yàn)榈闹悬c(diǎn)為,故,故,即直線的斜率為,故直線的方程為:,聯(lián)立,解得:,由韋達(dá)定理得:,,則故選:D8、A【解析】結(jié)合等差中項(xiàng)和等比中項(xiàng)分別求出和,代值運(yùn)算化簡即可.【詳解】由是等比數(shù)列可得,是等差數(shù)列可得,所以,故選:A9、A【解析】設(shè),求得,得到,求得,結(jié)合,即可求解.【詳解】由橢圓的方程,可得,設(shè),則,由,因?yàn)樗臈l直線的斜率之積大于,即,所以,則離心率,又因?yàn)闄E圓離心率,所以橢圓的離心率的取值范圍是.故選:A.10、B【解析】根據(jù)圓與與直線相切,利用圓心到直線的距離等于半徑求解.【詳解】圓的標(biāo)準(zhǔn)方程為:,則圓心為,半徑為,因?yàn)閳A與與直線相切,所以圓心到直線的距離等于半徑,即,解得或,故選:B11、C【解析】依題意根據(jù)等差數(shù)列的通項(xiàng)公式可得,再根據(jù)等差數(shù)列前項(xiàng)和公式計(jì)算可得;【詳解】解:因?yàn)椋?,即,所以,,,,故選:C12、C【解析】拋物線焦點(diǎn)為,準(zhǔn)線方程為,由得或所以,故答案為C考點(diǎn):1、拋物線的定義;2、直線與拋物線的位置關(guān)系二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】首先利用二項(xiàng)展開式的通項(xiàng)公式,求,再利用賦值法求系數(shù)的和以及【詳解】展開式的通項(xiàng)為,令,則,即,故,令,得.又,所以故故答案為:14、【解析】根據(jù)給定條件,各層燈籠數(shù)從上到下排成一列構(gòu)成等比數(shù)列,利用等比數(shù)列前n項(xiàng)和公式計(jì)算作答.【詳解】依題意,各層燈籠數(shù)從上到下排成一列構(gòu)成等比數(shù)列,公比,前9項(xiàng)和為1533,于是得,解得,所以內(nèi)部塔樓的頂層應(yīng)掛3盞燈籠.故答案為:315、【解析】根據(jù)導(dǎo)數(shù)的幾何意義求切線方程的斜率并求出,再由點(diǎn)斜式寫出切線方程即可.【詳解】由題設(shè),,則,而,所以在x=1處的切線方程為,即.故答案為:.16、【解析】根據(jù)二項(xiàng)分布的方差公式即可求出【詳解】因?yàn)?,所以故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】(1)根據(jù)短軸長求出b,根據(jù)M在C上求出a;(2)根據(jù)題意設(shè)直線l為,與橢圓方程聯(lián)立得根與系數(shù)關(guān)系,根據(jù)=即可求出m的值.【小問1詳解】∵短軸長為2,∴,∴,又∵點(diǎn)在C上,∴,∴,∴橢圓C的標(biāo)準(zhǔn)方程為;【小問2詳解】由(1)知,∵當(dāng)直線l斜率為0時(shí),不符合題意,∴設(shè)直線l的方程為:,聯(lián)立,消x得:,∵,∴設(shè),,則,∵,∴,∴,即,解得,∴直線l的方程為:或.18、(1);.(2)或.【解析】(1)首先求得交點(diǎn)坐標(biāo),然后利用待定系數(shù)法確定直線方程,再根據(jù)兩平行直線之間距離公式即可計(jì)算距離;(2)根據(jù)截距式方程的求法解答【小問1詳解】由得設(shè)直線的方程為,代入點(diǎn)坐標(biāo)得,∴直線的方程為∴兩平行線間的距離【小問2詳解】當(dāng)直線過坐標(biāo)原點(diǎn)時(shí),直線的方程為,即;當(dāng)直線不過坐標(biāo)原點(diǎn)時(shí),設(shè)直線的方程為,代入點(diǎn)坐標(biāo)得,∴直線的方程的方程為,即綜上所述,直線的方程為或19、(1)條件選擇見解析;an=2n,bn=25﹣n.(2)不存在,理由見解析.【解析】(1)把點(diǎn)(n,bn)代入曲線y=可得到bn=25﹣n,進(jìn)而求出a1,設(shè)等差數(shù)列{an}的公差為d,選①S4=20,利用等差數(shù)列的前n項(xiàng)和公式可求出d,從而得到an;若選②S3=2a3,利用等差數(shù)列的前n項(xiàng)和公式可求出d,從而得到an;若選③3a3﹣a5=b2,利用等差數(shù)列的通項(xiàng)公式公式可求出d,從而得到an;(2)由(1)可知Sn==n(1+n),=,再利用裂項(xiàng)相消法求出Tn=1﹣,不等式無解,即不存在正整數(shù)k,使得Tk>,且bk>【小問1詳解】解:∵點(diǎn)(n,bn)在曲線y=上,∴=25﹣n,∴a1=b4=25﹣4=2,設(shè)等差數(shù)列{an}的公差為d,若選①S4=20,則S4==20,解得d=2,∴an=2+2(n﹣1)=2n;若選②S3=2a3,則S3=a1+a2+a3=2a3,∴a1+a2=a3,∴2+2+d=2+2d,解得d=2,∴an=2+2(n﹣1)=2n;若選③3a3﹣a5=b2,則3(a1+2d)﹣(a1+4d)=25﹣2=8,∴2a1+2d=8,即2×2+2d=8,∴d=2,∴an=2+2(n﹣1)=2n;【小問2詳解】解:由(1)可知Sn===n(1+n),∴==,∴Tn=(1﹣)+()+……+()=1﹣,假設(shè)存在正整數(shù)k,使得Tk>,且bk>,∴,即,此不等式無解,∴不存在正整數(shù)k,使得Tk>,且bk>20、(1)證明見解析;(2).【解析】(1)由結(jié)合線面平行的判定即可推理作答.(2)取DE的中點(diǎn)M,連接,F(xiàn)M,證明平面平面,再建立空間直角坐標(biāo)系,借助空間向量推理、計(jì)算作答.【小問1詳解】在中,因?yàn)镋,F(xiàn)分別是AC,BC的中點(diǎn),所以,則圖2中,,而平面,平面,所以平面.【小問2詳解】依題意,是正三角形,四邊形是菱形,取DE的中點(diǎn)M,連接,F(xiàn)M,如圖,則,,即是二面角的平面角,,取中點(diǎn)N,連接,則有,在中,由余弦定理得:,于是有,,即,而,,,平面,則平面,又平面,從而有平面平面,因平面平面,平面,因此,平面,過點(diǎn)N作,則兩兩垂直,以點(diǎn)N為原點(diǎn),射線分別為x,y,z軸非負(fù)半軸建立空間直角坐標(biāo)系,則,,,,,,,設(shè)平面的法向量,則,令,得,設(shè)平面的法向量,則,令,得,顯然有,即,所以平面與平面的夾角為.【點(diǎn)睛】方法點(diǎn)睛:利用向量法求二面角:(1)找法向量,分別求出兩個(gè)半平面所在平面的法向量,然后求得法向量的夾角,結(jié)合圖形得到二面角的大??;(2)找與交線垂直的直線的方向向量,分別在二面角的兩個(gè)半平面內(nèi)找到與交線垂直且以垂足為起點(diǎn)的直線的方向

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論