版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
裝訂線裝訂線PAGE2第1頁(yè),共3頁(yè)南昌職業(yè)大學(xué)《數(shù)據(jù)導(dǎo)入與預(yù)處理應(yīng)用》
2023-2024學(xué)年第二學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)分析中,選擇合適的數(shù)據(jù)分析方法至關(guān)重要。關(guān)于描述性統(tǒng)計(jì)分析和推斷性統(tǒng)計(jì)分析,以下敘述不正確的是()A.描述性統(tǒng)計(jì)分析主要用于對(duì)數(shù)據(jù)的集中趨勢(shì)、離散程度和分布形態(tài)進(jìn)行描述和總結(jié)B.推斷性統(tǒng)計(jì)分析則是基于樣本數(shù)據(jù)對(duì)總體特征進(jìn)行估計(jì)和假設(shè)檢驗(yàn)C.描述性統(tǒng)計(jì)分析只能提供數(shù)據(jù)的基本信息,對(duì)于深入了解數(shù)據(jù)的內(nèi)在規(guī)律和關(guān)系作用有限D(zhuǎn).在實(shí)際應(yīng)用中,通常先進(jìn)行描述性統(tǒng)計(jì)分析,然后根據(jù)研究目的和數(shù)據(jù)特點(diǎn)選擇是否進(jìn)行推斷性統(tǒng)計(jì)分析2、在數(shù)據(jù)挖掘中,若要對(duì)數(shù)據(jù)進(jìn)行分類(lèi),以下哪種算法對(duì)噪聲和缺失值具有較好的容忍性?()A.決策樹(shù)B.樸素貝葉斯C.支持向量機(jī)D.隨機(jī)森林3、數(shù)據(jù)分析中的回歸分析用于建立自變量和因變量之間的關(guān)系模型。假設(shè)我們要研究房?jī)r(jià)與房屋面積、地理位置等因素的關(guān)系。以下關(guān)于回歸分析的描述,哪一項(xiàng)是不正確的?()A.多元線性回歸可以同時(shí)考慮多個(gè)自變量對(duì)因變量的影響B(tài).回歸模型的擬合優(yōu)度可以通過(guò)R平方值來(lái)評(píng)估C.存在共線性問(wèn)題時(shí),回歸模型的參數(shù)估計(jì)會(huì)不準(zhǔn)確,但不影響預(yù)測(cè)效果D.可以通過(guò)逐步回歸等方法選擇對(duì)因變量有顯著影響的自變量4、假設(shè)要分析某公司不同產(chǎn)品線的利潤(rùn)貢獻(xiàn)度,以下哪種圖表能夠清晰地展示各產(chǎn)品線的利潤(rùn)占比及排名?()A.帕累托圖B.?;鶊DC.弦圖D.以上都不是5、在處理大數(shù)據(jù)集時(shí),分布式計(jì)算框架能夠提高計(jì)算效率。假設(shè)要分析海量的社交媒體數(shù)據(jù),以下關(guān)于分布式計(jì)算框架選擇的描述,正確的是:()A.Hadoop適合處理大規(guī)模的結(jié)構(gòu)化數(shù)據(jù),但對(duì)實(shí)時(shí)性要求高的任務(wù)不太適用B.Spark僅能處理批處理任務(wù),無(wú)法支持流處理C.Flink在處理流數(shù)據(jù)方面表現(xiàn)不佳,主要用于批處理D.這些分布式計(jì)算框架都差不多,隨便選擇一個(gè)都能滿足需求6、在數(shù)據(jù)分析中,因果推斷用于確定變量之間的因果關(guān)系。假設(shè)要研究廣告投入與銷(xiāo)售額之間的因果關(guān)系,以下關(guān)于因果推斷的描述,哪一項(xiàng)是不正確的?()A.隨機(jī)對(duì)照實(shí)驗(yàn)是確定因果關(guān)系的黃金標(biāo)準(zhǔn),但在實(shí)際中可能難以實(shí)施B.觀察性研究可以通過(guò)控制混雜因素來(lái)推斷因果關(guān)系,但存在一定的局限性C.相關(guān)性強(qiáng)就意味著存在因果關(guān)系,可以直接根據(jù)相關(guān)性得出因果結(jié)論D.可以使用工具變量、雙重差分等方法來(lái)解決因果推斷中的內(nèi)生性問(wèn)題7、數(shù)據(jù)挖掘是從大量數(shù)據(jù)中發(fā)現(xiàn)潛在模式和知識(shí)的過(guò)程。假設(shè)一家電商企業(yè)想要通過(guò)數(shù)據(jù)挖掘來(lái)發(fā)現(xiàn)客戶(hù)的購(gòu)買(mǎi)行為模式,以便進(jìn)行精準(zhǔn)營(yíng)銷(xiāo)。以下哪種數(shù)據(jù)挖掘技術(shù)可能最為適用?()A.關(guān)聯(lián)規(guī)則挖掘B.分類(lèi)算法C.聚類(lèi)分析D.預(yù)測(cè)分析8、在數(shù)據(jù)分析中,建立合適的預(yù)測(cè)模型是常見(jiàn)的任務(wù)。假設(shè)你要預(yù)測(cè)下個(gè)月某產(chǎn)品的銷(xiāo)售量,有歷史銷(xiāo)售數(shù)據(jù)和相關(guān)的市場(chǎng)因素?cái)?shù)據(jù)。以下關(guān)于預(yù)測(cè)模型的選擇,哪一項(xiàng)是最需要考慮的因素?()A.模型的復(fù)雜程度,越復(fù)雜的模型通常預(yù)測(cè)效果越好B.數(shù)據(jù)的特點(diǎn)和規(guī)模,選擇適合數(shù)據(jù)的模型C.模型的訓(xùn)練時(shí)間,選擇訓(xùn)練速度快的模型D.模型在其他類(lèi)似問(wèn)題中的應(yīng)用效果,直接套用9、在數(shù)據(jù)分析中,聚類(lèi)算法用于將數(shù)據(jù)分為不同的組。假設(shè)我們要對(duì)客戶(hù)進(jìn)行細(xì)分。以下關(guān)于聚類(lèi)算法的描述,哪一項(xiàng)是錯(cuò)誤的?()A.K-Means算法需要事先指定聚類(lèi)的數(shù)量B.層次聚類(lèi)可以形成層次結(jié)構(gòu)的聚類(lèi)結(jié)果C.聚類(lèi)算法的結(jié)果是唯一確定的,不受初始值和參數(shù)的影響D.可以根據(jù)業(yè)務(wù)需求和數(shù)據(jù)特點(diǎn)選擇合適的聚類(lèi)算法10、在進(jìn)行數(shù)據(jù)分析時(shí),如果數(shù)據(jù)不符合正態(tài)分布,以下哪種統(tǒng)計(jì)方法可能不再適用?()A.t檢驗(yàn)B.方差分析C.線性回歸D.以上都是11、在進(jìn)行數(shù)據(jù)預(yù)處理時(shí),特征工程是重要的環(huán)節(jié)。假設(shè)我們有一個(gè)包含房屋屬性(面積、房間數(shù)量、地理位置等)和價(jià)格的數(shù)據(jù)集,以下關(guān)于特征工程的描述,正確的是:()A.直接使用原始特征進(jìn)行建模,無(wú)需進(jìn)行任何特征轉(zhuǎn)換和構(gòu)建B.對(duì)地理位置進(jìn)行獨(dú)熱編碼可以有效地將其納入模型C.特征縮放對(duì)模型的性能沒(méi)有影響,可忽略D.增加一些與房屋價(jià)格無(wú)關(guān)的特征,能夠提高模型的準(zhǔn)確性12、在進(jìn)行數(shù)據(jù)分析時(shí),如果需要對(duì)數(shù)據(jù)進(jìn)行缺失值處理,同時(shí)考慮數(shù)據(jù)的分布特征,以下哪種方法較為合適?()A.隨機(jī)森林插補(bǔ)B.基于聚類(lèi)的插補(bǔ)C.基于回歸的插補(bǔ)D.以上都不是13、在進(jìn)行數(shù)據(jù)分析時(shí),如果需要對(duì)數(shù)據(jù)進(jìn)行降維并保留數(shù)據(jù)的主要特征,以下哪種方法基于矩陣分解?()A.主成分分析B.因子分析C.獨(dú)立成分分析D.以上都是14、數(shù)據(jù)分析在金融領(lǐng)域的應(yīng)用越來(lái)越廣泛。以下關(guān)于數(shù)據(jù)分析在金融風(fēng)險(xiǎn)管理中的作用,不準(zhǔn)確的是()A.可以通過(guò)分析歷史數(shù)據(jù)來(lái)評(píng)估信用風(fēng)險(xiǎn),預(yù)測(cè)違約概率B.利用市場(chǎng)數(shù)據(jù)進(jìn)行風(fēng)險(xiǎn)模型的構(gòu)建和壓力測(cè)試,防范系統(tǒng)性風(fēng)險(xiǎn)C.數(shù)據(jù)分析能夠?qū)崟r(shí)監(jiān)測(cè)交易活動(dòng),發(fā)現(xiàn)異常和欺詐行為D.數(shù)據(jù)分析在金融風(fēng)險(xiǎn)管理中雖然有一定作用,但傳統(tǒng)的風(fēng)險(xiǎn)管理方法仍然是主要的手段,數(shù)據(jù)分析可以忽略15、某電商平臺(tái)想要了解商品銷(xiāo)量與廣告投入之間的關(guān)系,收集了大量數(shù)據(jù)。以下關(guān)于數(shù)據(jù)預(yù)處理的步驟,不正確的是?()A.檢查數(shù)據(jù)的完整性B.直接刪除所有缺失值C.處理異常值D.對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化16、數(shù)據(jù)分析中的抽樣方法用于從總體中選取部分樣本進(jìn)行分析。假設(shè)我們要對(duì)一個(gè)大型數(shù)據(jù)集進(jìn)行抽樣。以下關(guān)于抽樣方法的描述,哪一項(xiàng)是錯(cuò)誤的?()A.簡(jiǎn)單隨機(jī)抽樣每個(gè)樣本被選中的概率相等B.分層抽樣可以保證樣本在不同層次上具有代表性C.整群抽樣效率高,但可能導(dǎo)致樣本的偏差D.抽樣方法對(duì)數(shù)據(jù)分析的結(jié)果沒(méi)有影響,任何抽樣方法都可以使用17、關(guān)于數(shù)據(jù)分析中的數(shù)據(jù)降維,假設(shè)數(shù)據(jù)集具有高維度,但其中可能存在冗余和無(wú)關(guān)的特征。為了減少計(jì)算復(fù)雜度并提高分析效率,以下哪種降維方法可能是有效的?()A.主成分分析(PCA),提取主要成分B.線性判別分析(LDA),考慮類(lèi)別信息C.局部線性嵌入(LLE),保留局部結(jié)構(gòu)D.不進(jìn)行降維,直接處理高維數(shù)據(jù)18、數(shù)據(jù)分析中的模型融合可以結(jié)合多個(gè)模型的優(yōu)勢(shì)提高性能。假設(shè)已經(jīng)建立了多個(gè)不同的預(yù)測(cè)模型,如線性回歸、決策樹(shù)和隨機(jī)森林,要將它們?nèi)诤弦垣@得更準(zhǔn)確的預(yù)測(cè)結(jié)果。以下哪種模型融合策略在這種情況下更有可能提高預(yù)測(cè)精度?()A.簡(jiǎn)單平均融合B.加權(quán)平均融合C.基于投票的融合D.以上方法效果相同19、假設(shè)我們有一組銷(xiāo)售數(shù)據(jù),要分析不同產(chǎn)品類(lèi)別的銷(xiāo)售額在總銷(xiāo)售額中的占比情況,以下哪種圖表最能直觀地展示結(jié)果?()A.折線圖B.柱狀圖C.餅圖D.箱線圖20、在進(jìn)行數(shù)據(jù)分析項(xiàng)目時(shí),需要制定合理的項(xiàng)目計(jì)劃和流程。假設(shè)要在三個(gè)月內(nèi)完成一個(gè)大型企業(yè)的銷(xiāo)售數(shù)據(jù)分析項(xiàng)目,包括數(shù)據(jù)收集、清洗、分析和報(bào)告撰寫(xiě)。以下哪種項(xiàng)目管理方法在確保按時(shí)交付高質(zhì)量結(jié)果方面更具指導(dǎo)意義?()A.瀑布模型B.敏捷開(kāi)發(fā)C.螺旋模型D.以上方法效果相同二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)簡(jiǎn)述數(shù)據(jù)挖掘中的文本分類(lèi)技術(shù),如樸素貝葉斯、支持向量機(jī)等在文本分類(lèi)中的應(yīng)用,并比較它們的性能。2、(本題5分)闡述在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的因果推斷,包括常用的方法和技術(shù),以及在實(shí)際問(wèn)題中的應(yīng)用和限制。3、(本題5分)說(shuō)明在數(shù)據(jù)分析中如何進(jìn)行數(shù)據(jù)的異常檢測(cè)和處理?請(qǐng)闡述常見(jiàn)的異常檢測(cè)方法和處理策略,并舉例說(shuō)明在金融數(shù)據(jù)中的應(yīng)用。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某在線爵士舞教學(xué)平臺(tái)積累了學(xué)員學(xué)習(xí)數(shù)據(jù)、舞蹈風(fēng)格喜好、教學(xué)場(chǎng)地需求等。改善爵士舞教學(xué)環(huán)境和教學(xué)內(nèi)容。2、(本題5分)某電商直播平臺(tái)存有主播的直播數(shù)據(jù),如直播時(shí)長(zhǎng)、觀看人數(shù)、商品銷(xiāo)售額、粉絲互動(dòng)等。分析主播的直播時(shí)長(zhǎng)與商品銷(xiāo)售額之間的相關(guān)性以及粉絲互動(dòng)的影響。3、(本題5分)一家在線旅游平臺(tái)的自駕游產(chǎn)品數(shù)據(jù)包含路線規(guī)劃、景點(diǎn)選擇、費(fèi)用預(yù)算、用戶(hù)評(píng)價(jià)等。探討路線規(guī)劃和景點(diǎn)選擇對(duì)費(fèi)用預(yù)算和用戶(hù)評(píng)價(jià)的關(guān)系。4、(本題5分)一家手機(jī)應(yīng)用商店的工具類(lèi)應(yīng)用記錄了下載和使用數(shù)據(jù),包括應(yīng)用功能、下載量、使用頻率、用戶(hù)評(píng)分等。探討應(yīng)用功能與下載量和使用頻率的相關(guān)性。5、(本題5分)某在線旅游預(yù)訂平臺(tái)掌握了用戶(hù)的搜索偏好、預(yù)訂行為、取消訂單原因等數(shù)據(jù)。分析怎樣利用這些數(shù)據(jù)改進(jìn)用戶(hù)體驗(yàn)和服務(wù)質(zhì)量。四、論述題(本大題共2個(gè)小題,共20分)1、(本題10分)交通領(lǐng)域的擁堵和出行需求管理需要數(shù)據(jù)分析的支持。以某城市的交通管理
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 救助站醫(yī)療衛(wèi)生制度
- 郵政衛(wèi)生標(biāo)準(zhǔn)化管理制度
- 喀什市環(huán)境衛(wèi)生制度
- 衛(wèi)生間專(zhuān)區(qū)保潔管理制度
- 行政中心衛(wèi)生制度
- 煤礦衛(wèi)生所崗位責(zé)任制度
- 住院部醫(yī)生衛(wèi)生制度
- 公共衛(wèi)生間回收管理制度
- 檢測(cè)站衛(wèi)生管理制度
- 蔬菜店衛(wèi)生管理制度
- 2025年日本市場(chǎng)數(shù)字廣告投放洞察報(bào)告-Sensor Tower
- 繩索救援系統(tǒng)教學(xué)課件
- 統(tǒng)編版語(yǔ)文六年級(jí)下冊(cè)小升初課內(nèi)閱讀專(zhuān)項(xiàng)訓(xùn)練-(含答案)
- 保險(xiǎn)公司數(shù)據(jù)安全管理制度及流程
- 2024版科普仁愛(ài)版七年級(jí)英語(yǔ)下冊(cè)單詞表
- 生物-浙江省寧波市2024學(xué)年高一第一學(xué)期期末統(tǒng)一測(cè)試試題和答案
- 律師事務(wù)所整改措施
- 新能源光伏發(fā)電系統(tǒng)設(shè)計(jì)與安裝手冊(cè)
- JTS 206-2-2023 水運(yùn)工程樁基施工規(guī)范
- DB4403-T 427-2024 叉車(chē)運(yùn)行監(jiān)測(cè)系統(tǒng)技術(shù)規(guī)范
- 食品殺菌原理培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論