版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
AIDecisionDefinitionandBusinessStrategyCoordinationinIntelligentEnterpriseSupplyChainOptimizationfromthePerspectiveofSystemAutonomyBoundary
Abstract
ThisstudyfocusesontheproblemofvaguedefinitionofAIdecisionsandinsufficientcoordinationofbusinessstrategiesintheoptimizationprocessofintelligententerprisesupplychainfromtheperspectiveofsystemautonomyboundaries.TheaimistoclarifytheconnotationandextensionofAIdecisionsinthisscenarioandexploreeffectivepathsfortheircoordinationwithbusinessstrategies.Intheory,bysystematicallyreviewingrelevantliteratureonsystemautonomy,supplychainoptimization,andAIdecision-making,extractingcoretheoreticalcorrelations,andconstructinganAIdecision-makingdefinitionframeworkbasedonsystemautonomyboundaries;Inpractice,bycombiningtypicalscenariosofintelligententerprisesupplychainsuchasprocurementcollaboration,inventoryscheduling,andlogisticsdistribution,weprovidepracticalimplementationstrategiesforAIdecision-makingandbusinessstrategycollaborationforenterprises.Bycombiningliteratureresearchwithsinglecaseanalysis,itisexpectedtoformanAIdecision-makingsystemandcollaborativemodelcovering"definitionmechanismpractice",providingtheoreticalreferenceandpracticalguidanceforintelligententerprisesupplychainmanagement.
Keywords:Systemautonomyboundary;AIdecision-making;Supplychainoptimization;Businessstrategycollaboration;IntelligentEnterprise
Introduction
Drivenbythewaveofdigitizationandintelligence,intelligententerpriseshaveincreasinglystringentrequirementsforsupplychainoperationefficiencyandstrategicadaptability.AItechnology,withitsdataprocessingcapabilitiesandreal-timeresponseadvantages,hasopenedupnewpathsforoptimizingsupplychaindecisions.Fromthepracticeoftheconsumerelectronicsindustry,topenterpriseshaveachieveddatatransparencyinpartstraceabilityandinventorysharingthroughtheintegrationoflightweightAIalgorithmsandblockchaintechnology.Whileimprovingtheaccuracyofdemandforecasting(averageimprovementof15%-20%)andlogisticssafetyfactors,theyhavenotclearlydefinedtheboundariesofAIinkeydecisionssuchas"whethertoadjustcoresuppliers"and"whethertoactivateemergencyinventory",resultinginconflictsbetweenAIdecisionsandthecompany's"supplychainresilience"strategyinsomescenarios
ADDINEN.CITE<EndNote><Cite><Author>Byeon</Author><Year>2025</Year><RecNum>56</RecNum><DisplayText>(Byeonetal.,2025)</DisplayText><record><rec-number>56</rec-number><foreign-keys><keyapp="EN"db-id="aextv02fzv00r1evaf5xvxwzpazdt55f0fzw"timestamp="1763811223">56</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Byeon,Haewon</author><author>Alsaadi,Mahmood</author><author>Keshta,Ismail</author><author>Ahanger,TariqAhamed</author><author>Safarova,Nodira</author><author>Aldawsari,Hamad</author><author>Cascone,Lucia</author><author>Shabaz,Mohammad</author></authors></contributors><titles><title>LightweightAIandBlockchainOptimizationforEnhancingConsumerElectronicsDecision-Making</title><secondary-title>ConsumerElectronics,IEEETransactionson</secondary-title></titles><periodical><full-title>ConsumerElectronics,IEEETransactionson</full-title></periodical><pages>6007-6015</pages><volume>71</volume><number>2</number><dates><year>2025</year></dates><urls></urls></record></Cite></EndNote>
(Byeonetal.,2025)
.Inaddition,thedecisionsupportpotentialofbiglanguagemodelsinsupplychainriskwarning,suppliercommunicationdocumentgeneration,andotheraspectsisgraduallyemerging.However,duetothelackofcleardefinitions,itisdifficultforenterprisestodeterminetheirroleinstrategicdecisionssuchas"long-termnetworkplanningforthesupplychain",furtherhighlightingthenecessityofclarifyingAIdecisiondefinitions
ADDINEN.CITE<EndNote><Cite><Author>Aghaei</Author><Year>2025</Year><RecNum>54</RecNum><DisplayText>(Aghaeietal.,2025)</DisplayText><record><rec-number>54</rec-number><foreign-keys><keyapp="EN"db-id="aextv02fzv00r1evaf5xvxwzpazdt55f0fzw"timestamp="1763811223">54</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Aghaei,Raha</author><author>Kiaei,AliA.</author><author>Boush,Mahnaz</author><author>Vahidi,Javad</author><author>Barzegar,Zeynab</author><author>Rofoosheh,Mahan</author></authors></contributors><titles><title>ThePotentialofLargeLanguageModelsinSupplyChainManagement:AdvancingDecision-Making,Efficiency,andInnovation</title></titles><dates><year>2025</year></dates><urls></urls></record></Cite></EndNote>
(Aghaeietal.,2025)
.
However,theproblemofvaguedefinitionofAIdecision-makinganddisconnectionfrombusinessstrategycollaborationinintelligententerprisesisgraduallybecomingprominent.WhensomemanufacturingcompaniesintroduceAIforsupplychaindemandforecasting,theyonlyfocusontheaccuracyofalgorithmsforshort-termsalesforecasting,butignorewhetherthedecisionmatchesthecompany'slong-termstrategyof"expandingemergingmarkets"-forexample,theAIforecastofacertainhomeappliancecompanyisonlybasedonhistoricalsalesdataanddoesnotincludeemergingmarketconsumptiontrends,resultinginproductionplansbiasedtowardstraditionalproducts,whichcontradictsthestrategyof"seizingthenewtrackofsmarthomeappliances"
ADDINEN.CITE<EndNote><Cite><Author>Grover</Author><Year>2025</Year><RecNum>62</RecNum><DisplayText>(Grover,2025)</DisplayText><record><rec-number>62</rec-number><foreign-keys><keyapp="EN"db-id="aextv02fzv00r1evaf5xvxwzpazdt55f0fzw"timestamp="1763811223">62</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Grover,Nitin</author></authors></contributors><titles><title>AI-EnabledSupplyChainOptimization</title><secondary-title>InternationalJournalofAdvancedResearchinScience,CommunicationandTechnology</secondary-title></titles><periodical><full-title>InternationalJournalofAdvancedResearchinScience,CommunicationandTechnology</full-title></periodical><pages>28-44</pages><dates><year>2025</year></dates><urls></urls></record></Cite></EndNote>
(Grover,2025)
.Atthesametime,asacomplexsystemwithautonomousadjustmentcapabilities,theintelligententerprisesupplychainispronetotargetdeviationiftheAIdecisionboundaryisnotclearlydefined.Forexample,theAIinventorysystemofacertainautomotivepartsenterpriseonlyadjuststheorderquantitybasedonthe"inventoryturnoverrate"asthetarget,ignoringtherequirementof"reducingtransportationcarbonemissions"intheenterprise's"greensupplychain"strategy,resultinginanincreaseinthetransportationfrequencyofsmallbatchhigh-frequencyorders,andultimatelyexceedingthecarbonemissionsby12%
ADDINEN.CITE<EndNote><Cite><Author>Khoa</Author><Year>2024</Year><RecNum>59</RecNum><DisplayText>(Khoaetal.,2024)</DisplayText><record><rec-number>59</rec-number><foreign-keys><keyapp="EN"db-id="aextv02fzv00r1evaf5xvxwzpazdt55f0fzw"timestamp="1763811223">59</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Khoa,BuiQuoc</author><author>Nguyen,HoangTien</author><author>Anh,DinhBaHung</author><author>Ngoc,NguyenMinh</author></authors></contributors><titles><title>ImpactofArtificialIntelligence'sPartinSupplyChainPlanningandDecisionMakingOptimization</title><secondary-title>InternationalJournalofMultidisciplinaryResearchandGrowthEvaluation</secondary-title></titles><periodical><full-title>InternationalJournalofMultidisciplinaryResearchandGrowthEvaluation</full-title></periodical><pages>837-856</pages><volume>5</volume><number>6</number><dates><year>2024</year></dates><urls></urls></record></Cite></EndNote>
(Khoaetal.,2024)
.
Exploringthisissuehassignificanttheoreticalandpracticalvalue.Intheory,thetheoryofsystemautonomycanbeextendedfromautomationsystemsandurbansocialtechnologysystemstothesupplychainfield,clarifyingtheuniquecharacteristicsofsystemautonomyinsupplychainscenarios,fillingtheresearchgapintheintegrationof"systemautonomyAIdecision-makingstrategiccollaboration"inintelligententerprisesupplychains
ADDINEN.CITE<EndNote><Cite><Author>Chen</Author><Year>2021</Year><RecNum>21</RecNum><DisplayText>(Chenetal.,2021;Li,2022)</DisplayText><record><rec-number>21</rec-number><foreign-keys><keyapp="EN"db-id="aextv02fzv00r1evaf5xvxwzpazdt55f0fzw"timestamp="1763811223">21</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Chen,Hualong</author><author>Wen,Yuanqiao</author><author>Zhu,Man</author><author>Huang,Yamin</author><author>Hahn,Axel</author></authors></contributors><titles><title>FromAutomationSystemtoAutonomousSystem:AnArchitecturePerspective</title><secondary-title>JournalofMarineScienceandEngineering</secondary-title></titles><periodical><full-title>JournalofMarineScienceandEngineering</full-title></periodical><pages>24</pages><volume>9</volume><number>645</number><dates><year>2021</year></dates><urls></urls></record></Cite><Cite><Author>Li</Author><Year>2022</Year><RecNum>24</RecNum><record><rec-number>24</rec-number><foreign-keys><keyapp="EN"db-id="aextv02fzv00r1evaf5xvxwzpazdt55f0fzw"timestamp="1763811223">24</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Li,Weizi</author></authors></contributors><titles><title>UrbanSocio-TechnicalSystems:AnAutonomyandMobilityPerspective</title></titles><dates><year>2022</year></dates><urls></urls></record></Cite></EndNote>
(Chenetal.,2021;Li,2022)
;Inpractice,itcanhelpenterprisesclarifythedecision-makingroleofAIinvariouslinksofthesupplychain,andenhancethesynergybetweenthesupplychainandstrategy.Forexample,intheprocurementprocess,byclarifyingthatAIisonlyresponsibleforoperationaldecisionssuchas"qualifiedsupplierscreening"and"procurementpricecomparison",whilestrategicdecisionssuchas"coresuppliercooperationmodeadjustment"aremanuallyled,itcaneffectivelysupporttheenterprise's"supplierdiversification"strategy
ADDINEN.CITE<EndNote><Cite><Author>Tsintotas</Author><Year>2025</Year><RecNum>55</RecNum><DisplayText>(Tsintotasetal.,2025)</DisplayText><record><rec-number>55</rec-number><foreign-keys><keyapp="EN"db-id="aextv02fzv00r1evaf5xvxwzpazdt55f0fzw"timestamp="1763811223">55</key></foreign-keys><ref-typename="ConferenceProceedings">10</ref-type><contributors><authors><author>Tsintotas,KonstantinosA.</author><author>Moutsis,StavrosN.</author><author>Kansizoglou,Ioannis</author><author>Konstantinidis,FotiosK.</author><author>Gasteratos,Antonios</author></authors></contributors><titles><title>TheAdventofAIinModernSupplyChain</title><secondary-title>OlympusInternationalConferenceonSupplyChains</secondary-title></titles><dates><year>2025</year></dates><urls></urls></record></Cite></EndNote>
(Tsintotasetal.,2025)
.Meanwhile,theresearchfindingscanbeappliedacrossindustries.Forexample,pharmaceuticalcompaniescandrawonAIdecision-makingandstrategiccoordinationlogictooptimizetheboundarybetween"coldchaintemperaturemonitoring"(AIautonomousdecision-making)and"vaccineemergencyallocation"(human-machinecollaborativedecision-making)inthevaccinesupplychain,balancingsupplychainefficiencyanddrugsafetystrategy
ADDINEN.CITE<EndNote><Cite><Author>Tirkolaee</Author><Year>2023</Year><RecNum>51</RecNum><DisplayText>(Tirkolaeeetal.,2023)</DisplayText><record><rec-number>51</rec-number><foreign-keys><keyapp="EN"db-id="aextv02fzv00r1evaf5xvxwzpazdt55f0fzw"timestamp="1763811223">51</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Tirkolaee,ErfanBabaee</author><author>Torkayesh,AliEbadi</author><author>Tavana,VladimirDing,Weiping</author></authors></contributors><titles><title>Anintegrateddecisionsupportframeworkforresilientvaccinesupplychainnetworkdesign</title><secondary-title>EngineeringApplicationsofArtificialIntelligence:TheInternationalJournalofIntelligentReal-TimeAutomation</secondary-title></titles><periodical><full-title>EngineeringApplicationsofArtificialIntelligence:TheInternationalJournalofIntelligentReal-TimeAutomation</full-title></periodical><volume>126</volume><number>Pt.B</number><dates><year>2023</year></dates><urls></urls></record></Cite></EndNote>
(Tirkolaeeetal.,2023)
.
LiteratureReview
ResearchonSupplyChainOptimizationofIntelligentEnterprises
Intheoptimizationofsmartenterprisesupplychains,AItechnologyprovidesmultidimensionalsolutionstoindustry-specificpainpoints.Inagriculture,researchersinNorthChinadevelopedanAIoptimizationmodeltoaddressthechallengesof"fragmentedcollectionandhightransportationcosts"inagriculturalbiomasssupplychains.Byanalyzingbiomassyielddistributionandtransportationroutecongestioncoefficientsthroughmachinelearningalgorithms,themodelachievesdynamicoptimizationofcollectionpointlocationsanddeliveryroutes,ultimatelyreducingsupplychainoperationalcostsby8%-10%andimprovingbiomassutilizationefficiency
ADDINEN.CITE<EndNote><Cite><Author>Wu</Author><Year>2022</Year><RecNum>48</RecNum><DisplayText>(Wuetal.,2022)</DisplayText><record><rec-number>48</rec-number><foreign-keys><keyapp="EN"db-id="aextv02fzv00r1evaf5xvxwzpazdt55f0fzw"timestamp="1763811223">48</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Wu,Juanjuan</author><author>Zhang,Jian</author><author>Yi,Weiming</author><author>Cai,Hongzhen</author><author>Li,Yang</author><author>Su,Zhanpeng</author></authors></contributors><titles><title>Agri-biomasssupplychainoptimizationinnorthChina:Modeldevelopmentandapplication</title><secondary-title>Energy</secondary-title></titles><periodical><full-title>Energy</full-title></periodical><pages>239</pages><number>Jan.15Pt.D</number><dates><year>2022</year></dates><urls></urls></record></Cite></EndNote>
(Wuetal.,2022)
.Inthedairyindustry,scholarsfocusedontheenvironmentalsensitivityofpigsemenproductionanditshighdeliverytimelinessrequirements.UsingAItechnologytoidentifykeyfactorsaffectingproductionefficiencysuchastemperaturefluctuationsinsemenstorageanddeliveryradius,predictivemodelswereemployedtooptimizeproductionbatchesanddeliveryschedules.Thisresultedina5%increaseinsemensurvivalrateanda15%reductionindeliverydelays,achievingcomprehensiveoptimizationoftheentiresupplychainprocess
ADDINEN.CITE<EndNote><Cite><Author>Gorr</Author><Year>2022</Year><RecNum>57</RecNum><DisplayText>(Gorr,2022)</DisplayText><record><rec-number>57</rec-number><foreign-keys><keyapp="EN"db-id="aextv02fzv00r1evaf5xvxwzpazdt55f0fzw"timestamp="1763811223">57</key></foreign-keys><ref-typename="Thesis">32</ref-type><contributors><authors><author>Gorr,AllisonQuick.</author></authors></contributors><titles><title>IdentificationofFactorsAffectingDairySireSemenProductionandOptimizationoftheAISupplyChain</title></titles><dates><year>2022</year></dates><publisher>TheUniversityofWisconsin-Madison.;TheUniversityofWisconsin-Madison.;TheUniversityofWisconsin-Madison.</publisher><urls></urls></record></Cite></EndNote>
(Gorr,2022)
.
Intechnicalapplicationscenarios,theintegrationoflightweightAIandblockchaintechnologyhasemergedasakeyoptimizationstrategyforconsumerelectronicssupplychains.AIalgorithmsprocessinventorydatainreal-time,whileblockchainensuresdataintegrity.Thiscombinationenablesenterprisestoenhancereal-timedecision-makingresponsespeedby20%anddatacredibilityby30%whenaddressingtheindustry'scharacteristicsofrapidproductiterationandvolatiledemand
ADDINEN.CITE<EndNote><Cite><Author>Byeon</Author><Year>2025</Year><RecNum>56</RecNum><DisplayText>(Byeonetal.,2025)</DisplayText><record><rec-number>56</rec-number><foreign-keys><keyapp="EN"db-id="aextv02fzv00r1evaf5xvxwzpazdt55f0fzw"timestamp="1763811223">56</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Byeon,Haewon</author><author>Alsaadi,Mahmood</author><author>Keshta,Ismail</author><author>Ahanger,TariqAhamed</author><author>Safarova,Nodira</author><author>Aldawsari,Hamad</author><author>Cascone,Lucia</author><author>Shabaz,Mohammad</author></authors></contributors><titles><title>LightweightAIandBlockchainOptimizationforEnhancingConsumerElectronicsDecision-Making</title><secondary-title>ConsumerElectronics,IEEETransactionson</secondary-title></titles><periodical><full-title>ConsumerElectronics,IEEETransactionson</full-title></periodical><pages>6007-6015</pages><volume>71</volume><number>2</number><dates><year>2025</year></dates><urls></urls></record></Cite></EndNote>
(Byeonetal.,2025)
.Furthermore,largelanguagemodelsareexpandingtheirapplicationsinsupplychains.Beyondtraditionaldemandforecastingandriskalerts,theycanautomaticallygeneratesuppliercommunicationletters,supplychainoptimizationreports,andevenanalyzetheimpactofindustrypolicydocumentsonsupplychains,therebyfurtherexpandingtheboundariesofAIapplicationsinsupplychains
ADDINEN.CITE<EndNote><Cite><Author>Aghaei</Author><Year>2025</Year><RecNum>54</RecNum><DisplayText>(Aghaeietal.,2025)</DisplayText><record><rec-number>54</rec-number><foreign-keys><keyapp="EN"db-id="aextv02fzv00r1evaf5xvxwzpazdt55f0fzw"timestamp="1763811223">54</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Aghaei,Raha</author><author>Kiaei,AliA.</author><author>Boush,Mahnaz</author><author>Vahidi,Javad</author><author>Barzegar,Zeynab</author><author>Rofoosheh,Mahan</author></authors></contributors><titles><title>ThePotentialofLargeLanguageModelsinSupplyChainManagement:AdvancingDecision-Making,Efficiency,andInnovation</title></titles><dates><year>2025</year></dates><urls></urls></record></Cite></EndNote>
(Aghaeietal.,2025)
.
ResearchonSystemAutonomyandSupplyChainSystem
Asacoreattributeofcomplexsystems,thedefinitionofsystemautonomyanditsinfluencingfactorsiscrucialforunderstandingsupplychainoperations.Fromanevolutionaryperspective,thetransitionfromautomatedsystemstoautonomoussystemsrequiresanarchitecturefeaturingthreelayers:perception,decision-making,andexecution.Theperceptionlayercollectsenvironmentaldata,thedecision-makinglayergeneratesdata-drivensolutions,andtheexecutionlayerimplementsdecisions.Thisframeworkprovidesatheoreticalbasisforanalyzingsupplychainautonomy,analogoustothe"datacollection-planning-logisticsexecution"processinsupplychains
ADDINEN.CITE<EndNote><Cite><Author>Chen</Author><Year>2021</Year><RecNum>21</RecNum><DisplayText>(Chenetal.,2021)</DisplayText><record><rec-number>21</rec-number><foreign-keys><keyapp="EN"db-id="aextv02fzv00r1evaf5xvxwzpazdt55f0fzw"timestamp="1763811223">21</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Chen,Hualong</author><author>Wen,Yuanqiao</author><author>Zhu,Man</author><author>Huang,Yamin</author><author>Hahn,Axel</author></authors></contributors><titles><title>FromAutomationSystemtoAutonomousSystem:AnArchitecturePerspective</title><secondary-title>JournalofMarineScienceandEngineering</secondary-title></titles><periodical><full-title>JournalofMarineScienceandEngineering</full-title></periodical><pages>24</pages><volume>9</volume><number>645</number><dates><year>2021</year></dates><urls></urls></record></Cite></EndNote>
(Chenetal.,2021)
.Inurbansocio-technologicalsystemresearch,scholarshaveidentifiedtechnologicalmaturity,externalpolicyconstraints,andorganizationalmanagementmodelsaskeydeterminantsofsystemautonomy.Thesefactorsequallyapplytosupplychains—forinstance,aretailcompany'sinabilitytoautonomouslymanageinventoryduetoinadequatedataprocessingtechnology,orachemicalplant'srelianceonmanualapprovalforenvironmentalcompliancechecksinitssupplychain,bothdemonstratinghowtheseconstraintslimitsupplychainautonomy
ADDINEN.CITE<EndNote><Cite><Author>Li</Author><Year>2022</Year><RecNum>24</RecNum><DisplayText>(Li,2022)</DisplayText><record><rec-number>24</rec-number><foreign-keys><keyapp="EN"db-id="aextv02fzv00r1evaf5xvxwzpazdt55f0fzw"timestamp="1763811223">24</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Li,Weizi</author></authors></contributors><titles><title>UrbanSocio-TechnicalSystems:AnAutonomyandMobilityPerspective</title></titles><dates><year>2022</year></dates><urls></urls></record></Cite></EndNote>
(Li,2022)
.
Insupplychainsystemresearch,theinformationvalueandcoordinationchallengesofclosed-loopsupplychainshavegarneredsignificantattention.Scholarshaveanalyzedhowinformationsharingimpactssystemautonomythroughdual-channelclosed-loopsupplychainmodels.Theirfindingsrevealthatwhenmanufacturersandretailerssharesalesandrecyclingdata,thesystem'sautonomouscoordinationcapabilityimprovessubstantially.Forinstance,manufacturerscanadjustremanufacturingplansbasedonshareddata,whileretailersoptimizerecyclingpointlayouts,resultingina12%increaseinoverallsupplychainprofitability
ADDINEN.CITE<EndNote><Cite><Author>Sepúlveda-Rojas</Author><Year>2020</Year><RecNum>61</RecNum><DisplayText>(Sepúlveda-Rojas&Ternero,2020)</DisplayText><record><rec-number>61</rec-number><foreign-keys><keyapp="EN"db-id="aextv02fzv00r1evaf5xvxwzpazdt55f0fzw"timestamp="1763811223">61</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>JuanPedroSepúlveda-Rojas</author><author>Ternero,Rodrigo</author></authors></contributors><titles><title>AnalysisoftheValueofInformationandCoordinationinaDyadicClosedLoopSupplyChain</title><secondary-title>Sustainability</secondary-title></titles><periodical><full-title>Sustainability</full-title></periodical><volume>12</volume><dates><year>2020</year></dates><urls></urls></record></Cite></EndNote>
(Sepúlveda-Rojas&Ternero,2020)
.Additionally,insatellitecommunicationsystemstudies,researchersemphasizefromanationalsecurityperspectivethattheboundariesofsystemautonomymustbalance"operationalefficiency"with"securityandcontrollability."Forexample,satellitecommunicationsrequireautonomousresponsetosignalinterference,butcorecommandsstillneedmanualreview.Thislogicparallelscriticalmaterialsupplychains,whereautonomyboundariesmuststrikeabalancebetween"rapiddemandresponse"and"supplychainsecurity"toavoidriskscausedbyexcessiveautonomy
ADDINEN.CITE<EndNote><Cite><Author>Doicariu</Author><Year>2022</Year><RecNum>23</RecNum><DisplayText>(Doicariu,2022)</DisplayText><record><rec-number>23</rec-number><foreign-keys><keyapp="EN"db-id="aextv02fzv00r1evaf5xvxwzpazdt55f0fzw"timestamp="1763811223">23</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Doicariu,Daniel</author></authors></contributors><titles><title>SATELLITECOMMUNICATIONSSYSTEM-APERSPECTIVEONNATIONALSECURITY</title><secondary-title>ScientificResearch&EducationintheAirForce-AFASES</secondary-title></titles><periodical><full-title>ScientificResearch&EducationintheAirForce-AFASES</full-title></periodical><volume>2022</volume><dates><year>2022</year></dates><urls></urls></record></Cite></EndNote>
(Doicariu,2022)
.
ResearchontheIntegrationofSystemAutonomyBoundarieswithAIDecisionmakingandBusinessStrategy
Theintegrationofsystemautonomyboundaries,servingasacriticallinkbetweenAIdecision-makingandbusinessstrategy,remainsaweaklinkincurrentresearch.Inbiofuelsupplychainstudies,scholarshavecategorizeddecision-makinglevelsintostrategic,tactical,andoperationaltiersbasedontheirscopeandcomplexity,providingaframeworkfordefiningsystemautonomyboundariesandAIdecisionscopesatdifferentlevels
ADDINEN.CITE<EndNote><Cite><Author>Pishvaee</Author><Year>2021</Year><RecNum>58</RecNum><DisplayText>(Pishvaeeetal.,2021)</DisplayText><record><rec-number>58</rec-number><foreign-keys><keyapp="EN"db-id="aextv02fzv00r1evaf5xvxwzpazdt55f0fzw"timestamp="1763811223">58</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Pishvaee,MirSaman</author><author>Mohseni,Shayan</author><author>Bairamzadeh,Samira</author></authors></contributors><titles><title>Decision-makinglevelsinbiofuelsupplychain</title><secondary-title>BiomasstoBiofuelSupplyChainDesignandPlanningUnderUncertainty</secondary-title></titles><periodical><full-title>BiomasstoBiofuelSupplyChainDesignandPlanningUnderUncertainty</full-title></periodical><dates><year>2021</year></dates><urls></urls></record></Cite></EndNote>
(Pishvaeeetal.,2021)
.Similarly,inresearchonsustainablesupplychainmanagementdrivers,scholarsemployedtheAI-ISM(ExplanatoryStructuralModel)methodtoidentifykeyfactorsinfluencingsupplychainsystemautonomy,suchas"governmentenvironmentalpolicies,""corporategreenstrategies,"and"supplychaindatasharing."ThesefindingsofferabasisforestablishingAIdecisionboundaries
ADDINEN.CITE<EndNote><Cite><Author>Roshanpour</Author><Year>2025</Year><RecNum>50</RecNum><DisplayText>(Roshanpouretal.,2025)</DisplayText><record><rec-number>50</rec-number><foreign-keys><keyapp="EN"db-id="aextv02fzv00r1evaf5xvxwzpazdt55f0fzw"timestamp="1763811223">50</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Roshanpour,Reza</author><author>Parsanejad,Mohammadreza</author><author>Pishvaee,MirSaman</author></authors></contributors><titles><title>AnAI-ISMMethodologyforStructuralModelingofSustainableSupplyChainManagementDrivers</title><secondary-title>Access,IEEE</secondary-title></titles><periodical><full-title>Access,IEEE</full-title></periodical><pages>76481-76496</pages><volume>13</volume
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 家用電梯安全配置-哪些容易被忽略
- 廣東省江門市第一實(shí)驗(yàn)學(xué)校2025-2026學(xué)年八年級(jí)上學(xué)期第一次學(xué)情自測(cè)歷史試題
- 2025年西南交通大學(xué)馬克思主義基本原理概論期末考試模擬題附答案解析(奪冠)
- 2025年漢江師范學(xué)院馬克思主義基本原理概論期末考試模擬題帶答案解析(必刷)
- 2025年浙江萬(wàn)里學(xué)院馬克思主義基本原理概論期末考試模擬題附答案解析(必刷)
- 2025年懷仁縣幼兒園教師招教考試備考題庫(kù)附答案解析(必刷)
- 2024年隴縣幼兒園教師招教考試備考題庫(kù)及答案解析(奪冠)
- 2025年新津縣招教考試備考題庫(kù)附答案解析(奪冠)
- 2025年眉山職業(yè)技術(shù)學(xué)院馬克思主義基本原理概論期末考試模擬題帶答案解析
- 2025年廊坊燕京職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性考試題庫(kù)附答案解析
- 市政污水管道有限空間作業(yè)方案
- 2026中國(guó)電信四川公用信息產(chǎn)業(yè)有限責(zé)任公司社會(huì)成熟人才招聘?jìng)淇碱}庫(kù)及1套參考答案詳解
- 2026年秦皇島煙草機(jī)械有限責(zé)任公司招聘(21人)考試參考試題及答案解析
- 職場(chǎng)關(guān)鍵能力課件 4 時(shí)間管理
- 2025中日友好醫(yī)院招聘3人歷年真題匯編附答案解析
- 2025年河北省高考?xì)v史真題卷(含答案與解析)
- 2025年交管12123駕照學(xué)法減分考試題庫(kù)(附含答案)
- GB/T 5780-2025緊固件六角頭螺栓C級(jí)
- 肺結(jié)節(jié)消融課件
- 基于數(shù)據(jù)驅(qū)動(dòng)的控制力矩陀螺健康診斷與預(yù)測(cè)系統(tǒng)的深度剖析與實(shí)踐
- 軍事交通運(yùn)輸課件
評(píng)論
0/150
提交評(píng)論