版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣西貴港市港南中學(xué)2026屆高一上數(shù)學(xué)期末質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知實數(shù),且,則的最小值是()A.6 B.C. D.2.已知,且,則的值為()A. B.C. D.3.函數(shù)的圖象如圖所示,為了得到函數(shù)的圖象,可以把函數(shù)的圖象A.每個點的橫坐標縮短到原來的(縱坐標不變),再向左平移個單位B.每個點橫坐標伸長到原來的倍(縱坐標不變),再向左平移個單位C.先向左平移個單位,再把所得各點的橫坐標伸長到原來的倍(縱坐標不變)D.先向左平移個單位,再把所得各點的橫坐標縮短到原來的(縱坐標不變)4.已知點在外,則直線與圓的位置關(guān)系為()A.相交B.相切C.相離D.相交、相切、相離三種情況均有可能5.已知向量,則銳角等于A.30° B.45°C.60° D.75°6.如圖,三棱柱中,側(cè)棱底面,底面三角形是正三角形,是中點,則下列敘述正確的是A.平面B.與是異面直線C.D.7.已知為等差數(shù)列,為的前項和,且,,則公差A(yù). B.C. D.8.已知是偶函數(shù),且在上是減函數(shù),又,則的解集為()A. B.C. D.9.下列各式中,正確是()A. B.C. D.10.關(guān)于的方程的實數(shù)根的個數(shù)為()A.6 B.4C.3 D.2二、填空題:本大題共6小題,每小題5分,共30分。11.點是一次函數(shù)圖象上一動點,則的最小值是______12.設(shè),用表示不超過的最大整數(shù).則稱為高斯函數(shù).例如:,,已知函數(shù),則的值域為___________.13.已知,函數(shù)在上單調(diào)遞增,則的取值范圍是__14.已知函數(shù)的零點依次為a,b,c,則=________15.如圖,,,是三個邊長為1的等邊三角形,且有一條邊在同一直線上,邊上有2個不同的點,則__________16.已知函數(shù)是定義在上的奇函數(shù),當時的圖象如下所示,那么的值域是_______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在2020年初,新冠肺炎疫情襲擊全國,麗水市某村施行“封村”行動.為了更好地服務(wù)于村民,村衛(wèi)生室需建造一間地面面積為30平方米且墻高為3米的長方體供給監(jiān)測站.供給監(jiān)測站的背面靠墻,無需建造費用,因此甲工程隊給出的報價為:正面新建墻體的報價為每平方米600元,左右兩面新建墻體報價為每平方米360元,屋頂和地面以及其他報價共計21600元,設(shè)屋子的左右兩側(cè)墻的長度均為x米.(1)當左右兩面墻的長度為多少時,甲工程隊報價最低,最低報價為多少?(2)現(xiàn)有乙工程隊也參與此監(jiān)測站建造競標,其給出的整體報價為元,若無論左右兩面墻的長度為多少米,乙工程隊都能競標成功,試求a的取值范圍.18.求值:(1);(2).19.如圖,在中,為邊上的一點,,且與的夾角為.(1)設(shè),求,的值;(2)求的值.20.已知函數(shù)(1)判斷函數(shù)在上的單調(diào)性,并用定義法證明你的結(jié)論;(2)若,求函數(shù)的最大值和最小值.21.已知函數(shù),.(1)當時,求函數(shù)的值域;(2)如果對任意的,不等式恒成立,求實數(shù)的取值范圍;(3)是否存在實數(shù),使得函數(shù)最大值為0,若存在,求出的值,若不存在,說明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】構(gòu)造,利用均值不等式即得解【詳解】,當且僅當,即,時等號成立故選:B【點睛】本題考查了均值不等式在最值問題中的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算能力,屬于中檔題2、B【解析】先通過誘導(dǎo)公式把轉(zhuǎn)化成,再結(jié)合平方關(guān)系求解.【詳解】,又,.故選:B.3、C【解析】根據(jù)函數(shù)的圖象,設(shè)可得再根據(jù)五點法作圖可得故可以把函數(shù)的圖象先向左平移個單位,得到的圖象,再把所得各點的橫坐標伸長到原來的2倍(縱坐標不變),即可得到函數(shù)的圖象,故選C4、A【解析】結(jié)合點與圓的位置關(guān)系,直線和圓的位置關(guān)系列不等式,由此確定正確答案.【詳解】是圓C:外一點,,圓心到直線的距離:,直線與圓相交故選:A5、B【解析】因為向量共線,則有,得,銳角等于45°,選B6、D【解析】因為三棱柱A1B1C1-ABC中,側(cè)棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中點,所以對于A,AC與AB夾角為60°,即兩直線不垂直,所以AC不可能垂直于平面ABB1A1;故A錯誤;對于B,CC1與B1E都在平面CC1BB1中不平行,故相交;所以B錯誤;對于C,A1C1,B1E是異面直線;故C錯誤;對于D,因為幾何體是三棱柱,并且側(cè)棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中點,所以BB1⊥底面ABC,所以BB1⊥AE,AE⊥BC,得到AE⊥平面BCC1B1,所以AE⊥BB1;故選D.7、A【解析】分析:先根據(jù)已知化簡即得公差d.詳解:由題得4+4+d+4+2d=6,所以d=.故答案為A.點睛:本題主要考查等差數(shù)列的前n項和和等差數(shù)列的通項,意在考查學(xué)生對這些基礎(chǔ)知識的掌握水平.8、B【解析】根據(jù)題意推得函數(shù)在上是增函數(shù),結(jié)合,確定函數(shù)值的正負情況,進而求得答案.【詳解】是偶函數(shù),且在上是減函數(shù),又,則,且在上是增函數(shù),故時,,時,,故的解集是,故選:B.9、C【解析】利用指數(shù)函數(shù)的單調(diào)性可判斷AB選項的正誤,利用對數(shù)函數(shù)的單調(diào)性可判斷CD選項的正誤.【詳解】對于A選項,因為函數(shù)在上為增函數(shù),則,A錯;對于B選項,因為函數(shù)在上為減函數(shù),則,B錯;對于C選項,因為函數(shù)為上的增函數(shù),則,C對;對于D選項,因為函數(shù)為上的減函數(shù),則,D錯.故選:C.10、D【解析】轉(zhuǎn)化為求或的實根個數(shù)之和,再構(gòu)造函數(shù)可求解.【詳解】因為,所以,所以,所以或,令,則或,因為為增函數(shù),且的值域為,所以和都有且只有一個實根,且兩個實根不相等,所以原方程的實根的個數(shù)為.故選:D二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】把點代入函數(shù)的解析式得到,然后利用基本不等式求最小值.【詳解】由題意可知,又因為,所以,當且僅當即時等號成立所以的最小值是.故答案為:.12、【解析】對進行分類討論,結(jié)合高斯函數(shù)的知識求得的值域.【詳解】當為整數(shù)時,,當不是整數(shù),且時,,當不是整數(shù),且時,,所以的值域為.故答案為:13、【解析】本題已知函數(shù)的單調(diào)區(qū)間,求參數(shù)的取值范圍,難度中等.由,得,又函數(shù)在上單調(diào)遞增,所以,即,注意到,即,所以取,得考點:函數(shù)的圖象與性質(zhì)【方法點晴】已知函數(shù)為單調(diào)遞增函數(shù),可得變量的取值范圍,其必包含區(qū)間,從而可得參數(shù)的取值范圍,本題還需挖掘參數(shù)的隱含范圍,即函數(shù)在上單調(diào)遞增,可知,因此,綜合題14、【解析】根據(jù)對稱性得出,再由得出答案.【詳解】因為函數(shù)與的圖象關(guān)于對稱,函數(shù)的圖象關(guān)于對稱,所以,又,所以.故答案為:15、9【解析】以為原點建立平面直角坐標系,依題意可設(shè)三個點坐標分別為,故.【點睛】本題主要考查向量的加法、向量的數(shù)量積運算;考查平面幾何坐標法的思想方法.由于題目給定三個全等的三角形,而的位置不確定,故考慮用坐標法來解決.在利用坐標法解題時,首先要選擇合適的位置建立平面直角坐標系,建立后用坐標表示點的位置,最后根據(jù)題目的要求計算結(jié)果.16、【解析】分析:通過圖象可得時,函數(shù)的值域為,根據(jù)函數(shù)奇偶性的性質(zhì),確定函數(shù)的值域即可.詳解:∵當時,函數(shù)單調(diào)遞增,由圖象知,當時,在,即此時函數(shù)也單調(diào)遞增,且,∵函數(shù)是奇函數(shù),∴,∴,即,∴的值域是,故答案為點睛:本題主要考查函數(shù)值域的求法,利用函數(shù)奇偶性的性質(zhì)進行轉(zhuǎn)化是解決本題的關(guān)鍵.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)當左右兩面墻的長度為5時,報價最低為43200元;(2).【解析】(1)設(shè)甲工程隊的總造價為元,推出,利用基本不等式求解最值即可;(2)由題意對任意的,恒成立.即恒成立,利用換元法以及基本不等式求解最小值即可【詳解】(1)設(shè)甲工程隊的總造價為元,則,當且僅當,即時等號成立即當左右兩側(cè)墻的長度為5米時,甲工程隊的報價最低為43200元(2)由題意可得,對任意的,恒成立即,從而恒成立,令,,,又在,為單調(diào)增函數(shù),故當時,所以【點睛】方法點睛:求函數(shù)的最值常用的方法有:(1)函數(shù)法;(2)數(shù)形結(jié)合法;(3)導(dǎo)數(shù);(4)基本不等式法.要根據(jù)已知條件靈活選擇方法求解.18、(1)112(2)3【解析】(1)依據(jù)冪的運算性質(zhì)即可解決;(2)依據(jù)對數(shù)的運算性質(zhì)及換底公式即可解決.【小問1詳解】【小問2詳解】19、(1),;(2).【解析】(1)由向量的加減運算,可得,進而可得答案.(2)用表示,利用向量數(shù)量積公式,即可求得結(jié)果.【詳解】(1)因,所以..又,又因為、不共線,所以,,(2)結(jié)合(1)可得:.,因為,,且與的夾角為.所以.【點睛】本題考查了向量的加減運算、平面向量基本定理、向量的數(shù)量積運算等基本數(shù)學(xué)知識,考查了運算求解能力和轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題目.20、(1)減函數(shù),證明見解析(2),【解析】(1)根據(jù)定義法證明函數(shù)單調(diào)性即可求解;(2)根據(jù)(1)中的單調(diào)性求解最值即可.【小問1詳解】任取,,且則-因為,所以,所以,即,所以在區(qū)間上是減函數(shù)【小問2詳解】因為函數(shù)在區(qū)間上是減函數(shù),所以,.21、(1)[0,2];(2)(-∞,);(3)答案見解析.【解析】(1)由h(x)=-2(log3x-1)2+2,根據(jù)log3x∈[0,2],即可得值域;(2)由,令t=log3x,因為x∈[1,9],所以t=log3x∈[0,2],得(3-4t)(3-t)>k對一切t∈[0,2]恒成立,利用二次函數(shù)求函數(shù)的最小值即可;(3)由,假設(shè)最大值為0,因為,則有,求解即可.試題解析:(1)h(x)=(4-2log3x)·log3x=-2(log3x-1)2+2,因為x∈[1,9],所以log3x∈[0,2],故函數(shù)h(x)的值域為[0,2].(2)由,得(3-4log3x)(3-log3x)>k,令t=log3x,因為x∈[1,9],所以t=log3x∈[0,2],所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年國際旅游環(huán)境影響因素探討與實踐題目
- 2026年動物科學(xué)知識理解與實驗設(shè)計試題集
- 2026年生物醫(yī)學(xué)實驗室操作考試實驗設(shè)計與實驗記錄規(guī)范題目
- 2026年數(shù)據(jù)庫管理與系統(tǒng)開發(fā)試題集
- 2026年體育教練員專業(yè)能力綜合評估試題
- 2026年環(huán)境治理從業(yè)考試環(huán)境保護法實施細則與案例分析
- 2026年環(huán)境工程師認證試題污染治理與生態(tài)保護
- 2026年電子電路設(shè)計與分析數(shù)字信號處理題庫
- 2026年人工智能技術(shù)與應(yīng)用考試題集
- 2026年社會學(xué)理論在現(xiàn)實中的應(yīng)用社會問題調(diào)研實踐題集
- 2026年山東藥品食品職業(yè)學(xué)院單招綜合素質(zhì)考試備考試題含詳細答案解析
- GB/T 46878-2025二氧化碳捕集、運輸和地質(zhì)封存地質(zhì)封存
- 雷波縣糧油貿(mào)易總公司 2026年面向社會公開招聘備考考試試題及答案解析
- 2026年1月浙江省高考(首考)歷史試題(含答案)
- 療養(yǎng)院員工勞動保護制度
- 2026浙江溫州市蒼南縣城市投資集團有限公司招聘19人考試參考試題及答案解析
- 2026年廣州中考化學(xué)創(chuàng)新題型特訓(xùn)試卷(附答案可下載)
- 2025司法鑒定人資格考試考點試題及答案
- 保健用品生產(chǎn)管理制度
- 檔案計件工資管理制度
- 浙江省杭州市拱墅區(qū)2024-2025學(xué)年八年級上學(xué)期語文期末試卷(含答案)
評論
0/150
提交評論