大數(shù)據(jù)挖掘技術(shù)_第1頁(yè)
大數(shù)據(jù)挖掘技術(shù)_第2頁(yè)
大數(shù)據(jù)挖掘技術(shù)_第3頁(yè)
大數(shù)據(jù)挖掘技術(shù)_第4頁(yè)
大數(shù)據(jù)挖掘技術(shù)_第5頁(yè)
已閱讀5頁(yè),還剩44頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、1,Improvements to A-Priori,Bloom Filters Park-Chen-Yu Algorithm Multistage Algorithm Approximate Algorithms Compacting Results,2,Aside: Hash-Based Filtering,Simple problem: I have a set S of one billion strings of length 10. I want to scan a larger file F of strings and output those that are in S. I

2、 have 1GB of main memory. So I cant afford to store S in memory.,3,Solution (1),Create a bit array of 8 billion bits, initially all 0s. Choose a hash function h with range 0, 8*109), and hash each member of S to one of the bits, which is then set to 1. Filter the file F by hashing each string and ou

3、tputting only those that hash to a 1.,4,Solution (2),Filter,File F,0010001011000,h,5,Solution (3),As at most 1/8 of the bit array is 1, only 1/8th of the strings not in S get through to the output. If a string is in S, it surely hashes to a 1, so it always gets through. Can repeat with another hash

4、function and bit array to reduce the false positives by another factor of 8.,6,Solution Summary,Each filter step costs one pass through the remaining file F and reduces the fraction of false positives by a factor of 8. Actually 1/(1-e -1/8). Repeat passes until few false positives. Either accept som

5、e errors, or check the remaining strings. e.g., divide surviving F into chunks that fit in memory and make a pass though S for each.,7,Aside: Throwing Darts,A number of times we are going to need to deal with the problem: If we throw k darts into n equally likely targets, what is the probability that a target gets at least one dart? Example: targets = bits, darts = hash values of elements.,8,Throwing Darts (2),9,Throwing Darts (3),If k s.,31,All (Or Most) Frequent Itemsets In 0). Stores not only frequent information, but exact counts.,49,Example: Maximal/Closed,Count Maximal (

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論