軸對(duì)稱的性質(zhì)及線段的垂直平分線_第1頁
軸對(duì)稱的性質(zhì)及線段的垂直平分線_第2頁
軸對(duì)稱的性質(zhì)及線段的垂直平分線_第3頁
軸對(duì)稱的性質(zhì)及線段的垂直平分線_第4頁
軸對(duì)稱的性質(zhì)及線段的垂直平分線_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、軸對(duì)稱(2),軸對(duì)稱的性質(zhì) 及線段的垂直平分線,溫故知新:1.下面的圖形是軸對(duì)稱圖形嗎?如果是,你能指出它的對(duì)稱軸嗎?,是,是,是,不是,不是,如果一個(gè)圖形沿著一條直線 ,兩側(cè)的圖形能夠 ,這個(gè)圖形就是軸對(duì)稱圖形。,折痕所在的這條直線叫做_。,對(duì)稱軸,溫故知新,對(duì)折,完全重合,問題思考:如果兩個(gè)圖形成軸對(duì)稱,那么這兩個(gè)圖形有什么關(guān)系?,關(guān)于對(duì)稱軸重合,把一個(gè)圖形沿著某一條直線 ,如果它能夠 ,那么就說這兩個(gè)圖形關(guān)于這條直線對(duì)稱,這條直線叫做對(duì)稱軸,折疊后重合的點(diǎn)是對(duì)應(yīng)點(diǎn),叫做 。,A,A,B,C,B,C,折疊,與另一個(gè)圖形重合,對(duì)稱點(diǎn),MNAF于P AP = FP,如圖,ABC和FED關(guān)于直線

2、MN對(duì)稱,圖中的對(duì)稱點(diǎn)有哪些?線段AF,CD,BE,與直線MN有什么關(guān)系?,思考?,直線MN垂直且平分線段,定義:經(jīng)過線段的中點(diǎn)并且垂直于這條線段,就叫這條線段的垂直平分線,也叫中垂線。,請(qǐng)同學(xué)們自己動(dòng)手畫一個(gè)軸對(duì)稱圖形,并找出兩對(duì)稱點(diǎn),看一下兩對(duì)稱點(diǎn)的連線和對(duì)稱軸的關(guān)系?,我們可以看出軸對(duì)稱圖形與兩個(gè)圖形關(guān)于直線對(duì)稱一樣,對(duì)稱軸所在直線經(jīng)過對(duì)稱點(diǎn)所連線段的中點(diǎn),并且垂直于這條線段。,歸納軸對(duì)稱的性質(zhì):,如果兩個(gè)圖形關(guān)于某條直線對(duì) 稱,那么對(duì)稱軸是任何一對(duì)對(duì)應(yīng)點(diǎn) 所連線段的垂直平分線。類似的, 軸對(duì)稱圖形的對(duì)稱軸是任何一對(duì)對(duì) 應(yīng)點(diǎn)所連線段的垂直平分線。,探究1:直線L垂直平分AB, E, F,

3、 G,是L上的點(diǎn),分別量一量點(diǎn)E, F, G, 到A與B的距離,你有什么發(fā)現(xiàn)?,B,線段垂直平分線的性質(zhì):線段垂直平分線上的點(diǎn)與這條線段兩個(gè)端點(diǎn)的距離相等。,你能證明線段垂直平分線的性質(zhì)嗎?,證法一: 利用判定證明APC全等于BPC,證法二: 利用軸對(duì)稱性質(zhì)(由于點(diǎn)C是線段AB的中點(diǎn), 將線段AB沿直線L對(duì)折,線段PA和線段PB是 重合的,因此它們也是相等的。,探究2:用一根木棒和一根彈性均勻的橡皮筋,做一個(gè)簡(jiǎn)易的“弓”,“箭”通過木棍中央的孔射出去,怎樣才能保持射出箭的方向與木棍垂直呢?為什么?,只要使箭端到弓兩端的端點(diǎn) 的距離相等,就能保持射出箭的 方向與木棒垂直。,與一條線段兩個(gè)端點(diǎn)距離

4、相等的點(diǎn),在這 條線段的垂直平分線上。,上述兩個(gè)探究問題的結(jié)果就給出了線段垂直平分線的性質(zhì): 線段垂直平分線上的點(diǎn)與這條線段兩個(gè)端點(diǎn)的距離相等,反之,與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。所以線段的垂直平分線可以看成是與線段兩端點(diǎn)距離相等的所有點(diǎn)的集合。,隨堂練習(xí):,1.如圖1是小明制作的風(fēng)箏,為了平衡做成軸對(duì)稱圖形,已知OC是對(duì)稱軸圖形,已知OC是對(duì)稱軸A=35ACO=30, 那么BOC等于多少度?,N,115,2.如圖,AB=AC=8,AB的垂直平分線MN交AC于點(diǎn)D,若ADB的周長為18,求DC的長?,解:MN是AB的中垂線, DA=DB(線段垂直平分線上的點(diǎn)到這條 線段端點(diǎn)的離相等) 又 AB=AC=8, ABD周長=AB+AD+DB=AB+2AD=18 即8+2AD=18 ,AD=5 又AC=8 DC=AC-AD=8-5=3,小結(jié):我們這節(jié)課學(xué)習(xí)了軸對(duì)稱的性質(zhì)及線段的垂直平分線的有關(guān)知識(shí),一.軸對(duì)稱的性質(zhì):如果兩個(gè)圖形關(guān)于某條直線對(duì)稱,那么對(duì)稱軸是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直 平分線。類似的,軸對(duì)稱圖形的對(duì)稱軸是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線。,二.垂直平分線的概念:經(jīng)過線段的中點(diǎn)并且垂直 于這條線段,就叫這條線段的垂直平分線,三.線段垂直平分線的性質(zhì):線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論