九年級數(shù)學上冊 第24章 第13課時 正多邊形和圓課件 新人教版.ppt_第1頁
九年級數(shù)學上冊 第24章 第13課時 正多邊形和圓課件 新人教版.ppt_第2頁
九年級數(shù)學上冊 第24章 第13課時 正多邊形和圓課件 新人教版.ppt_第3頁
九年級數(shù)學上冊 第24章 第13課時 正多邊形和圓課件 新人教版.ppt_第4頁
九年級數(shù)學上冊 第24章 第13課時 正多邊形和圓課件 新人教版.ppt_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、第十三課時 正多邊形和圓,圓的內接正n邊形&圓的外切正n邊形,正多邊形: 各邊相等,各角也相等的多邊形叫做正多邊形。 正n邊形: 如果一個正多邊形有n條邊,那么這個正多邊形叫做正n邊形。,三條邊相等,三個角也相等(60度),四條邊都相等,四個角也相等(90度),類比聯(lián)想,怎樣找圓的內接正三角形?怎樣找圓的外切正三角形?,怎樣找圓的內接正方形?怎樣找圓的外切正方形?,怎樣找圓的內接正n邊形?怎樣找圓的外切正n邊形?,把圓分成n(n3)等份: 依次連結各分點所得的多邊形是這個圓的內接正多邊形; 經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正多邊形。,定理,正多邊形和圓,正n邊

2、形的外接圓&正n邊形的內切圓,類比聯(lián)想,正三角形 有沒有外接圓和內切圓? 怎樣作出這兩個圓? 這兩個圓有什么位置關系?,正方形 有沒有外接圓和內切圓? 怎樣作出這兩個圓? 這兩個圓有什么位置關系?,那么,正n邊形呢?,定理,任何正多邊形都有一個外接圓和一個內切圓,并且這兩個圓是同心圓。,正多邊形的外接圓(或內切圓)的圓心叫做正多邊形的中心,外接圓的半徑叫做正多邊形的半徑,內切圓的半徑叫做正多邊形的邊心距。正多邊形各邊所對的外接圓的圓心角叫做正多邊形的中心角。正n邊形的每個中心角都等于360/n。,正多邊形的性質,正多邊形是軸對稱圖形,正n邊形有n條對稱軸。 若n為偶數(shù),則其為中心對稱圖形。,正多邊形的性質,各邊相等,各角相等 圓的內接正n邊形的各個頂點把圓分成n等分 圓的外切正n邊形的各邊與圓的n個切點把圓分成n等分 每個正多邊形都有一個內切圓和外接圓,這兩個圓是同心圓,圓心就是正多邊形的中心 正多邊形都是軸對稱圖形,如果邊數(shù)是偶數(shù)那么它還是中心對稱圖形 正n邊形的中心角和它的每個外角都等于360/n,每個內角都等于(n-2)180/n 邊數(shù)相同的正多邊形相似,周長比、邊長比、半徑比、邊心距比、對應對角線比都等于相似比,面積比等于相似比平方,求證:各邊相等的圓內接多邊形是正多邊形。,求證:各角相等的圓外切多邊形是正多邊形。

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論