高中數(shù)學(xué) 第五課時(shí) 微積分基本定理教案 北師大版選修_第1頁(yè)
高中數(shù)學(xué) 第五課時(shí) 微積分基本定理教案 北師大版選修_第2頁(yè)
高中數(shù)學(xué) 第五課時(shí) 微積分基本定理教案 北師大版選修_第3頁(yè)
高中數(shù)學(xué) 第五課時(shí) 微積分基本定理教案 北師大版選修_第4頁(yè)
高中數(shù)學(xué) 第五課時(shí) 微積分基本定理教案 北師大版選修_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、第五課時(shí) 微積分基本定理一:教學(xué)目標(biāo)知識(shí)與技能目標(biāo):通過實(shí)例,直觀了解微積分基本定理的含義,會(huì)用牛頓-萊布尼茲公式求簡(jiǎn)單的定積分過程與方法:通過實(shí)例體會(huì)用微積分基本定理求定積分的方法情感態(tài)度與價(jià)值觀:通過微積分基本定理的學(xué)習(xí),體會(huì)事物間的相互轉(zhuǎn)化、對(duì)立統(tǒng)一的辯證關(guān)系,培養(yǎng)學(xué)生辯證唯物主義觀點(diǎn),提高理性思維能力。二、教學(xué)重難點(diǎn)重點(diǎn)通過探究變速直線運(yùn)動(dòng)物體的速度與位移的關(guān)系,使學(xué)生直觀了解微積分基本定理的含義,并能正確運(yùn)用基本定理計(jì)算簡(jiǎn)單的定積分。難點(diǎn)了解微積分基本定理的含義三、教學(xué)方法:探析歸納,講練結(jié)合四、教學(xué)過程(一)、復(fù)習(xí):定積分的概念及用定義計(jì)算(二)、探究新課我們講過用定積分定義計(jì)算定

2、積分,但其計(jì)算過程比較復(fù)雜,所以不是求定積分的一般方法。我們必須尋求計(jì)算定積分的新方法,也是比較一般的方法。變速直線運(yùn)動(dòng)中位置函數(shù)與速度函數(shù)之間的聯(lián)系設(shè)一物體沿直線作變速運(yùn)動(dòng),在時(shí)刻t時(shí)物體所在位置為S(t),速度為v(t)(),則物體在時(shí)間間隔內(nèi)經(jīng)過的路程可用速度函數(shù)表示為。 另一方面,這段路程還可以通過位置函數(shù)S(t)在上的增量來表達(dá),即 =而。 對(duì)于一般函數(shù),設(shè),是否也有 若上式成立,我們就找到了用的原函數(shù)(即滿足)的數(shù)值差來計(jì)算在上的定積分的方法。注:1:定理 如果函數(shù)是上的連續(xù)函數(shù)的任意一個(gè)原函數(shù),則證明:因?yàn)?與都是的原函數(shù),故-=C() 其中C為某一常數(shù)。 令得-=C,且=0即有

3、C=,故=+ =-=令,有此處并不要求學(xué)生理解證明的過程為了方便起見,還常用表示,即該式稱之為微積分基本公式或牛頓萊布尼茲公式。它指出了求連續(xù)函數(shù)定積分的一般方法,把求定積分的問題,轉(zhuǎn)化成求原函數(shù)的問題,是微分學(xué)與積分學(xué)之間聯(lián)系的橋梁。 它不僅揭示了導(dǎo)數(shù)和定積分之間的內(nèi)在聯(lián)系,同時(shí)也提供計(jì)算定積分的一種有效方法,為后面的學(xué)習(xí)奠定了基礎(chǔ)。因此它在教材中處于極其重要的地位,起到了承上啟下的作用,不僅如此,它甚至給微積分學(xué)的發(fā)展帶來了深遠(yuǎn)的影響,是微積分學(xué)中最重要最輝煌的成果。例1計(jì)算下列定積分:(1); (2)。解:(1)因?yàn)?,所以。?)因?yàn)?,所以。練?xí):計(jì)算解:由于是的一個(gè)原函數(shù),所以根據(jù)牛頓

4、萊布尼茲公式有 =例2計(jì)算下列定積分:。由計(jì)算結(jié)果你能發(fā)現(xiàn)什么結(jié)論?試?yán)们吿菪蔚拿娣e表示所發(fā)現(xiàn)的結(jié)論。解:因?yàn)椋裕? 可以發(fā)現(xiàn),定積分的值可能取正值也可能取負(fù)值,還可能是0: ( l )當(dāng)對(duì)應(yīng)的曲邊梯形位于 x 軸上方時(shí)(圖1.6一3 ) ,定積分的值取正值,且等于曲邊梯形的面積;圖1 . 6 一 3 ( 2 )(2)當(dāng)對(duì)應(yīng)的曲邊梯形位于 x 軸下方時(shí)(圖 1 . 6 一 4 ) ,定積分的值取負(fù)值,且等于曲邊梯形的面積的相反數(shù); ( 3)當(dāng)位于 x 軸上方的曲邊梯形面積等于位于 x 軸下方的曲邊梯形面積時(shí),定積分的值為0(圖 1 . 6 一 5 ) ,且等于位于 x 軸上方的曲邊梯形

5、面積減去位于 x 軸下方的曲邊梯形面積 例3A、B兩站相距7.2km,一輛電車從A站B開往站,電車開出ts后到達(dá)途中C點(diǎn),這一段的速度為1.2t(m/s),到C點(diǎn)的速度為24m/s,從C點(diǎn)到B點(diǎn)前的D點(diǎn)以等速行駛,從D點(diǎn)開始剎車,經(jīng)ts后,速度為(24-1.2t)m/s,在B點(diǎn)恰好停車,試求(1)A、C間的距離;(2)B、D間的距離;(3)電車從A站到B站所需的時(shí)間。分析:作變速直線運(yùn)動(dòng)的物體所經(jīng)過的路程s,等于其速度函數(shù)v=v(t)(v(t)0)在時(shí)間區(qū)間a,b上的定積分,即略解:(1)設(shè)A到C的時(shí)間為t1則1.2t=24, t1=20(s),則AC(2)設(shè)D到B的時(shí)間為t21則24-1.2t2=0, t21=20(s),則DB(3)CD=7200-2240=6720(m),則從C到D的時(shí)間為280(s),則所求時(shí)間為20+280+20=320(s)微積分基本定理揭示了導(dǎo)數(shù)和定積分之間的內(nèi)在聯(lián)系,同時(shí)它也提供了計(jì)算定積分的一種有效方法微積分基本定理是微積分學(xué)中最重要的定理,它使微積分學(xué)蓬勃發(fā)展起來,成為一門影響深遠(yuǎn)的學(xué)科,可以毫不夸張地說,微積分基本定理是微積分中最重要、最輝煌的成果四:課堂小結(jié):本節(jié)課借助于變速運(yùn)動(dòng)物體的速度與路程的關(guān)系以及圖形得出了特殊情況下的牛頓-萊布尼茲公式.成立,進(jìn)而推廣到了一般的函數(shù)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論