版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、CHAPTER 21,Option Valuation,Intrinsic value - profit that could be made if the option was immediately exercised Call: stock price - exercise price Put: exercise price - stock price Time value - the difference between the option price and the intrinsic value,Option Values,Figure 21.1 Call Option Valu
2、e before Expiration,Table 21.1 Determinants of Call Option Values,Restrictions on Option Value: Call,Value cannot be negative Value cannot exceed the stock value Value of the call must be greater than the value of levered equity C S0 - ( X + D ) / ( 1 + rf )T C S0 - PV ( X ) - PV ( D ),Figure 21.2 R
3、ange of Possible Call Option Values,Figure 21.3 Call Option Value as a Function of the Current Stock Price,Figure 21.4 Put Option Values as a Function of the Current Stock Price,100,120,90,Stock Price,C,10,0,Call Option Value X = 110,Binomial Option Pricing: Text Example,Alternative Portfolio Buy 1
4、share of stock at $100 Borrow $81.82 (10% Rate) Net outlay $18.18 Payoff Value of Stock 90 120 Repay loan - 90 - 90 Net Payoff 0 30,18.18,30,0,Payoff Structure is exactly 3 times the Call,Binomial Option Pricing: Text Example Continued,18.18,30,0,C,30,0,3C = $18.18 C = $6.06,Binomial Option Pricing:
5、 Text Example Continued,Alternative Portfolio - one share of stock and 3 calls written (X = 110) Portfolio is perfectly hedged Stock Value90120 Call Obligation 0 -30 Net payoff90 90 Hence 100 - 3C = 81.82 or C = 6.06,Replication of Payoffs and Option Values,Generalizing the Two-State Approach,Assume
6、 that we can break the year into two six-month segments In each six-month segment the stock could increase by 10% or decrease by 5% Assume the stock is initially selling at 100 Possible outcomes: Increase by 10% twice Decrease by 5% twice Increase once and decrease once (2 paths),Generalizing the Tw
7、o-State Approach Continued,100,110,121,95,90.25,104.50,Assume that we can break the year into three intervals For each interval the stock could increase by 5% or decrease by 3% Assume the stock is initially selling at 100,Expanding to Consider Three Intervals,S,S +,S + +,S -,S - -,S + -,S + + +,S +
8、+ -,S + - -,S - - -,Expanding to Consider Three Intervals Continued,Possible Outcomes with Three Intervals,EventProbability Final Stock Price 3 up 1/8100 (1.05)3 =115.76 2 up 1 down 3/8100 (1.05)2 (.97)=106.94 1 up 2 down 3/8100 (1.05) (.97)2= 98.79 3 down 1/8100 (.97)3= 91.27,Figure 21.5 Probabilit
9、y Distributions,Co = SoN(d1) - Xe-rTN(d2) d1 = ln(So/X) + (r + 2/2)T / (T1/2) d2 = d1 + (T1/2) where Co = Current call option value So = Current stock price N(d) = probability that a random draw from a normal distribution will be less than d,Black-Scholes Option Valuation,X = Exercise price e = 2.71
10、828, the base of the natural log r = Risk-free interest rate (annualizes continuously compounded with the same maturity as the option) T = time to maturity of the option in years ln = Natural log function Standard deviation of annualized cont. compounded rate of return on the stock,Black-Scholes Opt
11、ion Valuation Continued,Figure 21.6 A Standard Normal Curve,So = 100X = 95 r = .10T = .25 (quarter) = .50 d1 = ln(100/95) + (.10+(5 2/2) / (5.251/2) = .43 d2 = .43 + (5.251/2) = .18,Call Option Example,N (.43) = .6664 Table 21.2 d N(d) .42 .6628 .43.6664 Interpolation .44.6700,Probabilities from Nor
12、mal Distribution,N (.18) = .5714 Table 21.2 d N(d) .16 .5636 .18.5714 .20.5793,Probabilities from Normal Distribution Continued,Table 21.2 Cumulative Normal Distribution,Co = SoN(d1) - Xe-rTN(d2) Co = 100 X .6664 - 95 e- .10 X .25 X .5714 Co = 13.70 Implied Volatility Using Black-Scholes and the act
13、ual price of the option, solve for volatility. Is the implied volatility consistent with the stock?,Call Option Value,Spreadsheet 21.1 Spreadsheet to Calculate Black-Scholes Option Values,Figure 21.7 Using Goal Seek to Find Implied Volatility,Figure 21.8 Implied Volatility of the S&P 500 (VIX Index)
14、,Black-Scholes Model with Dividends,The call option formula applies to stocks that pay dividends One approach is to replace the stock price with a dividend adjusted stock price Replace S0 with S0 - PV (Dividends),Put Value Using Black-Scholes,P = Xe-rT 1-N(d2) - S0 1-N(d1) Using the sample call data
15、 S = 100 r = .10 X = 95 g = .5 T = .25 95e-10 x.25(1-.5714)-100(1-.6664) = 6.35,P = C + PV (X) - So = C + Xe-rT - So Using the example data C = 13.70X = 95S = 100 r = .10T = .25 P = 13.70 + 95 e -.10 X .25 - 100 P = 6.35,Put Option Valuation: Using Put-Call Parity,Hedging: Hedge ratio or delta The n
16、umber of stocks required to hedge against the price risk of holding one option Call = N (d1) Put = N (d1) - 1 Option Elasticity Percentage change in the options value given a 1% change in the value of the underlying stock,Using the Black-Scholes Formula,Figure 21.9 Call Option Value and Hedge Ratio,
17、Buying Puts - results in downside protection with unlimited upside potential Limitations Tracking errors if indexes are used for the puts Maturity of puts may be too short Hedge ratios or deltas change as stock values change,Portfolio Insurance,Figure 21.10 Profit on a Protective Put Strategy,Figure
18、 21.11 Hedge Ratios Change as the Stock Price Fluctuates,Figure 21.12 S&P 500 Cash-to-Futures Spread in Points at 15 Minute Intervals,Hedging On Mispriced Options,Option value is positively related to volatility: If an investor believes that the volatility that is implied in an options price is too low, a profitable trade is possible Profit must be hedged against a decline in the value of the stock Performance depends on option price relative to the implied volatility,Hedging and Delta,The appr
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- P210TDA2822集成功率放大器的介紹
- GB/T 46783-2025溫室氣體管理體系建材企業(yè)實施指南
- 特級護理記錄單與醫(yī)療安全
- 指甲護理產(chǎn)品
- 護理禮儀:傾聽技巧與患者溝通
- 2026年如何通過情感營銷提高客戶體驗
- 賀銀成課件教學(xué)課件
- 2026春招:項目經(jīng)理題庫及答案
- 2026春招:維修技術(shù)員題庫及答案
- 貼豆子課件教學(xué)課件
- 管理體系不符合項整改培訓(xùn)試題及答案
- 醫(yī)院住院部建筑投標(biāo)方案技術(shù)標(biāo)
- 偏癱康復(fù)的科普小知識
- 2025年(AIGC技術(shù))生成式AI應(yīng)用試題及答案
- 肺癌全程管理課件
- 商用變壓器知識培訓(xùn)內(nèi)容課件
- 新疆開放大學(xué)2025年春《建筑構(gòu)造實訓(xùn)》形考作業(yè)【標(biāo)準(zhǔn)答案】
- 建設(shè)工程質(zhì)量管理手冊范本
- 醫(yī)院申請醫(yī)養(yǎng)結(jié)合申請書
- 2024-2025學(xué)年山東省濱州市北鎮(zhèn)中學(xué)鴻蒙班九年級下學(xué)寒假開學(xué)考試數(shù)學(xué)試題
- 園林綠化服務(wù)方案(3篇)
評論
0/150
提交評論