下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、3.3.1教案(新人教A必修3)一、教學(xué)目標(biāo):1、 知識(shí)與技能:(1)正確理解幾何概型的概念;(2)掌握幾何概型的概率公式:P(A)=;(3)會(huì)根據(jù)古典概型與幾何概型的區(qū)別與聯(lián)系來(lái)判別某種概型是古典概型還是幾何概型;2、 過(guò)程與方法:(1)發(fā)現(xiàn)法教學(xué),通過(guò)師生共同探究,體會(huì)數(shù)學(xué)知識(shí)的形成,學(xué)會(huì)應(yīng)用數(shù)學(xué)知識(shí)來(lái)解決問(wèn)題,體會(huì)數(shù)學(xué)知識(shí)與現(xiàn)實(shí)世界的聯(lián)系,培養(yǎng)邏輯推理能力.3、 情感態(tài)度與價(jià)值觀:本節(jié)課的主要特點(diǎn)是隨機(jī)試驗(yàn)多,學(xué)習(xí)時(shí)養(yǎng)成勤學(xué)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)習(xí)慣。二、重點(diǎn)與難點(diǎn):幾何概型的概念、公式及應(yīng)用;三、學(xué)法與教學(xué)用具:1、通過(guò)對(duì)本節(jié)知識(shí)的探究與學(xué)習(xí),感知用圖形解決概率問(wèn)題的方法,掌握數(shù)學(xué)思想與邏輯推理的
2、數(shù)學(xué)方法;2、教學(xué)用具:投燈片,計(jì)算機(jī)及多媒體教學(xué)四、教學(xué)設(shè)想:1、創(chuàng)設(shè)情境:在概率論發(fā)展的早期,人們就已經(jīng)注意到只考慮那種僅有有限個(gè)等可能結(jié)果的隨機(jī)試驗(yàn)是不夠的,還必須考慮有無(wú)限多個(gè)試驗(yàn)結(jié)果的情況。例如一個(gè)人到單位的時(shí)間可能是8:00至9:00之間的任何一個(gè)時(shí)刻;往一個(gè)方格中投一個(gè)石子,石子可能落在方格中的任何一點(diǎn)這些試驗(yàn)可能出現(xiàn)的結(jié)果都是無(wú)限多個(gè)。2、基本概念:(1)幾何概率模型:如果每個(gè)事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長(zhǎng)度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型;(2)幾何概型的概率公式:P(A)=;(3)幾何概型的特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無(wú)限多個(gè)
3、;2)每個(gè)基本事件出現(xiàn)的可能性相等3、 例題分析:課本例題略例1 判下列試驗(yàn)中事件A發(fā)生的概度是古典概型,還是幾何概型。(1)拋擲兩顆骰子,求出現(xiàn)兩個(gè)“4點(diǎn)”的概率;(2)如課本圖33-1中的(2)所示,圖中有一個(gè)轉(zhuǎn)盤,甲乙兩人玩轉(zhuǎn)盤游戲,規(guī)定當(dāng)指針指向B區(qū)域時(shí),甲獲勝,否則乙獲勝,求甲獲勝的概率。分析:本題考查的幾何概型與古典概型的特點(diǎn),古典概型具有有限性和等可能性。而幾何概型則是在試驗(yàn)中出現(xiàn)無(wú)限多個(gè)結(jié)果,且與事件的區(qū)域長(zhǎng)度有關(guān)。解:(1)拋擲兩顆骰子,出現(xiàn)的可能結(jié)果有66=36種,且它們都是等可能的,因此屬于古典概型;(2)游戲中指針指向B區(qū)域時(shí)有無(wú)限多個(gè)結(jié)果,而且不難發(fā)現(xiàn)“指針落在陰影部
4、分”,概率可以用陰影部分的面積與總面積的比來(lái)衡量,即與區(qū)域長(zhǎng)度有關(guān),因此屬于幾何概型例2 某人欲從某車站乘車出差,已知該站發(fā)往各站的客車均每小時(shí)一班,求此人等車時(shí)間不多于10分鐘的概率分析:假設(shè)他在060分鐘之間任何一個(gè)時(shí)刻到車站等車是等可能的,但在0到60分鐘之間有無(wú)窮多個(gè)時(shí)刻,不能用古典概型公式計(jì)算隨機(jī)事件發(fā)生的概率.可以通過(guò)幾何概型的求概率公式得到事件發(fā)生的概率.因?yàn)榭蛙嚸啃r(shí)一班,他在0到60分鐘之間任何一個(gè)時(shí)刻到站等車是等可能的,所以他在哪個(gè)時(shí)間段到站等車的概率只與該時(shí)間段的長(zhǎng)度有關(guān),而與該時(shí)間段的位置無(wú)關(guān),這符合幾何概型的條件.解:設(shè)A=等待的時(shí)間不多于10分鐘,我們所關(guān)心的事件A
5、恰好是到站等車的時(shí)刻位于50,60這一時(shí)間段內(nèi),因此由幾何概型的概率公式,得P(A)= =,即此人等車時(shí)間不多于10分鐘的概率為小結(jié):在本例中,到站等車的時(shí)刻X是隨機(jī)的,可以是0到60之間的任何一刻,并且是等可能的,我們稱X服從0,60上的均勻分布,X為0,60上的均勻隨機(jī)數(shù)練習(xí):1已知地鐵列車每10min一班,在車站停1min,求乘客到達(dá)站臺(tái)立即乘上車的概率。2兩根相距6m的木桿上系一根繩子,并在繩子上掛一盞燈,求燈與兩端距離都大于2m的概率解:1由幾何概型知,所求事件A的概率為P(A)= ;2記“燈與兩端距離都大于2m”為事件A,則P(A)= =例3 在1萬(wàn)平方千米的海域中有40平方千米的
6、大陸架儲(chǔ)藏著石油,假設(shè)在海域中任意一點(diǎn)鉆探,鉆到油層面的概率是多少?分析:石油在1萬(wàn)平方千米的海域大陸架的分布可以看作是隨機(jī)的而40平方千米可看作構(gòu)成事件的區(qū)域面積,有幾何概型公式可以求得概率。解:記“鉆到油層面”為事件A,則P(A)= =0.004答:鉆到油層面的概率是0.004例4 在1升高產(chǎn)小麥種子中混入了一種帶麥誘病的種子,從中隨機(jī)取出10毫升,則取出的種子中含有麥誘病的種子的概率是多少?分析:病種子在這1升中的分布可以看作是隨機(jī)的,取得的10毫克種子可視作構(gòu)成事件的區(qū)域,1升種子可視作試驗(yàn)的所有結(jié)果構(gòu)成的區(qū)域,可用“體積比”公式計(jì)算其概率。解:取出10毫升種子,其中“含有病種子”這一
7、事件記為A,則P(A)= =0.01答:取出的種子中含有麥誘病的種子的概率是0.014、課堂小結(jié):1、幾何概型是區(qū)別于古典概型的又一概率模型,使用幾何概型的概率計(jì)算公式時(shí),一定要注意其適用條件:每個(gè)事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長(zhǎng)度成比例;5、課堂練習(xí):1在500ml的水中有一個(gè)草履蟲,現(xiàn)從中隨機(jī)取出2ml水樣放到顯微鏡下觀察,則發(fā)現(xiàn)草履蟲的概率是( )A0.5 B0.4 C0.004 D不能確定2平面上畫了一些彼此相距2a的平行線,把一枚半徑ra的硬幣任意擲在這個(gè)平面上,求硬幣不與任何一條平行線相碰的概率6、評(píng)價(jià)標(biāo)準(zhǔn):2aroM1C(提示:由于取水樣的隨機(jī)性,所求事件A:“在取出2ml的水樣中有草履蟲”的概率等于水樣的體積與總體積之比=0.004)2解:把“硬幣不與任一條平行線相碰”的事件記為事件A
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年四川港榮能源集團(tuán)有限公司招聘?jìng)淇碱}庫(kù)完整答案詳解
- 2026年山西電機(jī)制造有限公司招聘?jìng)淇碱}庫(kù)及答案詳解一套
- 2026年醫(yī)療大數(shù)據(jù)與人工智能研究中心專職科研人員招聘?jìng)淇碱}庫(kù)參考答案詳解
- 2026年寶雞市科技創(chuàng)新交流服務(wù)中心公開招聘高層次人才備考題庫(kù)帶答案詳解
- 2026年寧波中遠(yuǎn)海運(yùn)航空貨運(yùn)代理有限公司招聘?jìng)淇碱}庫(kù)含答案詳解
- 2026年廈門杏南中學(xué)非在編(頂崗)教師招聘?jìng)淇碱}庫(kù)及答案詳解參考
- 2026年上海核工程研究設(shè)計(jì)院股份有限公司招聘?jìng)淇碱}庫(kù)有答案詳解
- 2026年廈門市濱東小學(xué)補(bǔ)充非在編人員招聘?jìng)淇碱}庫(kù)及答案詳解1套
- 2026年山西省福利彩票市場(chǎng)管理員招聘?jìng)淇碱}庫(kù)含答案詳解
- 2026年13名貴州銅仁數(shù)據(jù)職業(yè)學(xué)院管理人員招聘?jìng)淇碱}庫(kù)及一套參考答案詳解
- 2026年七年級(jí)歷史上冊(cè)期末考試試卷及答案(共六套)
- 2025年全載錄丨Xsignal 全球AI應(yīng)用行業(yè)年度報(bào)告-
- 資產(chǎn)評(píng)估期末試題及答案
- 2025年內(nèi)科醫(yī)師定期考核模擬試題及答案
- 鄭州大學(xué)《大學(xué)英語(yǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 校企合作工作室規(guī)范管理手冊(cè)
- 2025年農(nóng)業(yè)農(nóng)村部科技發(fā)展中心招聘?jìng)淇碱}庫(kù)及1套參考答案詳解
- 2025年南陽(yáng)科技職業(yè)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性考試模擬測(cè)試卷附答案
- 毛澤東思想和中國(guó)特色社會(huì)主義理論體系概論+2025秋+試題1
- 2025年10月自考13532法律職業(yè)倫理試題及答案
- 高中數(shù)學(xué)拔尖創(chuàng)新人才培養(yǎng)課程體系建構(gòu)與實(shí)施
評(píng)論
0/150
提交評(píng)論