高中數(shù)學第一章算法初步簡介教案新人教A版必修_第1頁
高中數(shù)學第一章算法初步簡介教案新人教A版必修_第2頁
高中數(shù)學第一章算法初步簡介教案新人教A版必修_第3頁
高中數(shù)學第一章算法初步簡介教案新人教A版必修_第4頁
高中數(shù)學第一章算法初步簡介教案新人教A版必修_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、第一章“算法初步” 簡介 算法是高中數(shù)學課程中的新增內(nèi)容,其思想是非常重要的,但并不神秘。例如,運用消元法解二元一次方程組、求最大公因數(shù)等的過程就是算法。一般地,機械式地按照某種確定的步驟行事,通過一系列小的簡單計算操作完成復(fù)雜計算的過程,被人們稱為“算法”過程。例如,人們很容易完成的基本計算是一位數(shù)的加、減、乘和進位借位等,復(fù)雜計算過程實際上都是通過這些操作,按照一定的工作次序與步驟,組合完成的。一、內(nèi)容與課程學習目標算法是數(shù)學及其應(yīng)用的重要組成部分,是計算科學的重要基礎(chǔ)。隨著現(xiàn)代信息技術(shù)的飛速發(fā)展,算法在科學技術(shù)、社會發(fā)展中發(fā)揮著越來越大的作用,并日益融入社會生活的許多方面,算法思想已經(jīng)成

2、為現(xiàn)代人應(yīng)具備的一種數(shù)學素養(yǎng)。需要特別指出的是,中國古代數(shù)學中蘊涵了豐富的算法思想。在本章中,學生將在義務(wù)教育階段初步感受算法思想的基礎(chǔ)上,結(jié)合對具體數(shù)學實例的分析,體驗程序框圖在解決問題中的作用;通過模仿、操作、探索,學習設(shè)計程序框圖表達解決問題的過程;體會算法的基本思想以及算法的重要性和有效性,發(fā)展有條理的思考與表達的能力,提高邏輯思維能力。具體來說,通過本章的學習,應(yīng)當使學生達到以下目標:1算法的含義、程序框圖(1)通過對解決具體問題過程與步驟的分析(如:二元一次方程組求解等問題),體會算法的思想,了解算法的含義。(2)通過模仿、操作、探索,經(jīng)歷設(shè)計程序框圖表達解決問題的過程。在具體問題

3、的解決過程中(如:三元一次方程組求解等問題),理解程序框圖的三種基本邏輯結(jié)構(gòu):順序、條件分支、循環(huán)。2基本算法語句經(jīng)歷將具體問題的程序框圖轉(zhuǎn)化為程序語句的過程,理解幾種基本算法語句輸入語句、輸出語句、賦值語句、條件語句、循環(huán)語句,體會算法的基本思想。3通過閱讀中國古代數(shù)學中的算法案例,體會中國古代數(shù)學對世界數(shù)學發(fā)展的貢獻,增強民族自豪感。二、內(nèi)容安排本章包括3節(jié),約需12課時,具體內(nèi)容和課時分配(僅供參考)如下:1.1 算法與程序框圖 約2課時1.2 基本算法語句 約3課時1.3 算法案例 約6課時閱讀與思考 割圓術(shù)小 結(jié) 約1課時本章知識結(jié)構(gòu)如下:1中學數(shù)學中的算法內(nèi)容和其它內(nèi)容是密切聯(lián)系在

4、一起的,比如線性方程組的求解、數(shù)列的求和等。具體來說,需要通過模仿、操作、探索,學習設(shè)計程序框圖表達解決問題的過程,體會算法的基本思想和含義,理解算法的基本結(jié)構(gòu)和基本算法語句,并了解中國古代數(shù)學中的算法。2本章集中解決算法的一些基本問題,比如通過實例讓學生體會和理解算法的含義,通過模仿、操作、探索,經(jīng)歷通過設(shè)計程序框圖表達解決問題的過程,了解算法語言的基本構(gòu)成,理解幾種基本算法語句輸入語句、輸出語句、賦值語句、條件語句、循環(huán)語句,并通過閱讀中國古代數(shù)學中的算法案例,體會中國古代數(shù)學對世界數(shù)學發(fā)展的貢獻。3一般算法由順序、條件和循環(huán)三種基本結(jié)構(gòu)組成。順序結(jié)構(gòu)是由若干個依次執(zhí)行的處理步驟組成的,這

5、是任何一個算法都離不開的基本主體結(jié)構(gòu)。例如,下面的算法就是典型的順序結(jié)構(gòu)。一個三角形的三邊邊長分別為2、3、4,設(shè)計一個算法,求出它的面積。算法分析:第一步:輸入3個數(shù)2、3、4。第二步:計算。第三步:計算三角形的面積。第四步:輸出s的值。條件結(jié)構(gòu)是以條件的判斷為起始點,根據(jù)條件是否成立而決定執(zhí)行哪一個處理步驟。例如,下面的例題就要求我們做出判斷。任意給定3個正實數(shù),設(shè)計一個算法求分別以這3個數(shù)為三邊邊長的三角形的面積。算法分析:第一步:輸入3個數(shù)a、b、c。第二步:判斷a、b、c是否能構(gòu)成三角形。第三步:如果能構(gòu)成三角形,計算和三角形的面積。第四步:輸出的值或者“無法構(gòu)成三角形”的信息。循環(huán)

6、結(jié)構(gòu)是指在算法設(shè)計中,從某處開始有規(guī)律地反復(fù)執(zhí)行某一處理步驟,這個處理步驟稱為循環(huán)體。循環(huán)體的執(zhí)行次數(shù)由一個控制循環(huán)條件決定。滿足條件反復(fù)做,不滿足則停止。循環(huán)結(jié)構(gòu)分為兩種當型(while型)和直到型(until型)。當型循環(huán)在執(zhí)行循環(huán)體前對控制循環(huán)條件進行判斷,當條件滿足時反復(fù)做,不滿足停止;直到型循環(huán)在執(zhí)行了一次循環(huán)體之后,對控制循環(huán)條件進行判斷,當條件不滿足時反復(fù)做,滿足則停止。 下面的例子分別用當型和直到型算法解決同一個問題。例如,畫出求1 + 2 + + 100的程序框圖。程序框圖: “WHILE型循環(huán)” “UNTIL型循環(huán)”4“算法是計算機科學的基礎(chǔ)”,計算機完成任何一項任務(wù)都需要

7、算法。但是,用自然語言或程序框圖描述的算法計算機是無法“理解”的,我們還需要將算法用計算機能夠理解的語言表達出來,通常這稱為程序設(shè)計,所用的語言稱為程序設(shè)計語言(programming language)。程序設(shè)計語言由一些有特定含義的程序語句構(gòu)成,與算法程序框圖的三種基本結(jié)構(gòu)相對應(yīng),任何程序設(shè)計語言都包含輸入輸出語句 、賦值語句、條件語句和循環(huán)語句。不同的程序設(shè)計語言有不同的語句形式和語法規(guī)則,但基本結(jié)構(gòu)是相同的。正是由于這樣的原因,在研究算法的時候,有時并不很關(guān)心算法語句是否用得是某種精確的程序語言,而采用基本結(jié)構(gòu)相同的更為簡便易懂的語言形式,有人稱之為偽代碼。5中國古代數(shù)學中算法的內(nèi)容是

8、非常豐富的,比如,中國古代數(shù)學著作九章算術(shù)中介紹了下述“約分術(shù)”:“可半者半之,不可半者,副置分母、子之數(shù),以少減多,更相減損,求其等也。以等數(shù)約之?!币馑际钦f:若分子、分母全是偶數(shù),則把分子、分母分別置于兩邊,然后由較大的數(shù)減去較小的數(shù),并輾轉(zhuǎn)相減,直到兩邊所得的數(shù)相等,就用這個數(shù)(等數(shù))來約分。這個數(shù)就是分子和分母的最大公約數(shù)?!凹s分術(shù)”實際上給出了求任意兩個數(shù)的最大公約數(shù)的一種算法,被后人稱為“更相減損術(shù)”。這種方法與歐氏算法異曲同工,本質(zhì)上是相同的。在中國古代數(shù)學中,中學生能夠很容易理解的內(nèi)容還有熟知的割圓術(shù)、多項式求值的秦九韶算法等。算法內(nèi)容反映了時代的特點,同時也是中國數(shù)學課程內(nèi)容

9、的新特色。中國古代數(shù)學以算法為主要特征,取得了舉世公認的偉大成就?,F(xiàn)代信息技術(shù)的發(fā)展使算法重新煥發(fā)了前所未有的生機和活力,算法進入中學數(shù)學課程,既反映了時代的要求,也是中國古代數(shù)學思想在一個新的層次上的復(fù)興,也就成為了中國數(shù)學課程的一個新的特色。三、編寫中考慮的幾個問題強調(diào)通過案例引導(dǎo)學生認識算法的本質(zhì)算法的概念并沒有一個統(tǒng)一的定義,教科書從豐富的實例出發(fā),自始至終貫徹“通過對解決具體問題過程與步驟的分析(如二元一次方程組求解等問題),體會算法的思想,了解算法的含義”的要求,力求使學生能夠?qū)λ惴ū举|(zhì)有所認識。自然語言、程序框圖和算法語言是表達算法的三種形式,教科書通過簡單的實例來說明程序框圖和

10、算法語言的使用,抓住了算法表示的核心內(nèi)容,不追求完整。算法案例的處理也遵循了這一原則,重在對案例的算法的分析,案例的選擇也主要從算法的典型性、與以往知識的連續(xù)性和可接受性的角度出發(fā),使學生能夠通過案例的學習進一步理解算法的本質(zhì)。突出與其他部分內(nèi)容的聯(lián)系,體現(xiàn)算法的基本思想教科書中例題的選取注意體現(xiàn)與已經(jīng)學過的內(nèi)容的聯(lián)系,比如一元二次方程、二元二次方程的解法過程,用二分法求方程的近似解,遞推數(shù)列求和等等。力求通過這樣的聯(lián)系使學生認識到算法思想的重要性,并逐步能夠應(yīng)用算法思想解決一些實際問題。3強調(diào)學生的實踐算法是實踐性很強的內(nèi)容,只有通過學生自己的親身實踐,讓學生親自去解決幾個算法設(shè)計的問題,才

11、能使學生體會算法的基本思想,學會一些基本邏輯結(jié)構(gòu)和語句。因此,在教科書編寫過程中,特別強調(diào)了通過實例讓學生體會和理解算法的含義,通過模仿、操作、探索,經(jīng)歷通過設(shè)計程序框圖表達解決問題的過程,了解算法語言的基本構(gòu)成,理解幾種基本算法語句。四、對教學的幾個建議準確把握算法內(nèi)容的教學要求算法一方面具有具體化、程序化、機械化的特點,同時又有高度抽象性、概括性和精確性。對于一個具體算法而言,從算法分析到算法語言的實現(xiàn),任何一個疏漏或錯誤都將導(dǎo)致算法的失敗。算法是思維的條理化、邏輯化。算法既重視“算則”,更重視“算理”。對于算法而言,一步一步的程序化步驟,即“算則”固然重要,但這些步驟的依據(jù),即“算理”有

12、著更基本的作用,“算理”是“算則”的基礎(chǔ),“算則”是“算理”的表現(xiàn)。算法思想可以貫穿于整個中學數(shù)學內(nèi)容之中,有豐富的層次遞進的素材,而在算法的具體實現(xiàn)上又可以和信息技術(shù)相聯(lián)系,因而,算法有利于培養(yǎng)學生理性精神和實踐能力,是實施探究性學習的良好素材。根據(jù)對算法的上述理解,以及“標準”對算法的定位,教學中應(yīng)當把體會算法的基本思想、提高學生邏輯思維能力作為重點,即教學過程中,應(yīng)當以教科書中提供的案例為載體,引導(dǎo)學生在設(shè)計程序框圖、將程序框圖轉(zhuǎn)化為程序語句的實踐中,體會算法的含義,學會如何用程序框圖表達解決問題的思路,而不要將本章內(nèi)容簡單處理成程序語言的學習和程序設(shè)計。2算法教學必須通過實例進行,應(yīng)盡量使用信息技術(shù)前已指出,算法的操作性很強,因此算法教學應(yīng)當強調(diào)學生的動手實踐。教學中應(yīng)當充分應(yīng)用教科書中提供的實例,使學生在解決具體問題的過程中學習一些基本邏輯結(jié)構(gòu)和算法語句。算法內(nèi)容是將數(shù)學中的算法與計算機技術(shù)建立聯(lián)系,形式化地表示算法。為了有條理地、清晰地表達算法,往往需要將解決問題的過程整理成程序框圖;為了能在計算機上實現(xiàn),又要將自然語言或程序框圖翻譯成計算機語言。因此,如果能讓學生上機,算法設(shè)計的整個過程就可以得到完整的體現(xiàn),學生可以及時看到自己設(shè)計的算法的可行性、有效性,這不但可以很好地激發(fā)學生的興趣,而且還能提高學習效果。因此

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論