系統(tǒng)建模與仿真課后作業(yè)_第1頁
系統(tǒng)建模與仿真課后作業(yè)_第2頁
系統(tǒng)建模與仿真課后作業(yè)_第3頁
系統(tǒng)建模與仿真課后作業(yè)_第4頁
系統(tǒng)建模與仿真課后作業(yè)_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、1.4、系統(tǒng)、模型和仿真三者之間具有怎樣的相互關系?答:系統(tǒng)是研究的對象,模型是系統(tǒng)的抽象,仿真通過對模型的實驗以達到研究系統(tǒng)的目的。2.2、通過因特網查閱有關蒲豐投針實驗的文獻資料,理解蒙特卡羅方法的基本思想及其應用的一般步驟。答:蒲豐投針實驗內容是這樣的:在平面上畫有一組間距為a的平行線,將一根長度為L(La)的針任意擲在這個平面上,求此針與平行線中任一條相交的概率?!辈钾S本人證明了,這個概率是:p=2L/(a) (為圓周率)利用這個公式可以用概率的方法得到圓周率的近似值。所以,蒙特卡羅方法的基本思想就是:當試驗次數(shù)充分多時,某一事件出現(xiàn)的頻率近似等于該事件發(fā)生的概率。一般步驟:(1)構造

2、或描述概率過程 (2)以已知概率分布進行抽樣 (3)建立各種估計量2.8、簡述離散事件系統(tǒng)仿真的一般步驟。(1)闡明問題與設定目標(2)仿真建模(3)數(shù)據(jù)采集(4)仿真模型的驗證(5)仿真程序的編制與校核(6)仿真模型的運行(7)仿真輸出結果的統(tǒng)計分析3.3、以第二章圖2-5所示的并行加工中心系統(tǒng)為對象,試分別畫出相應的實體流圖和活動循環(huán)圖,并比較它們兩者有何區(qū)別和練習。(1)實體流圖N零件到達是否有設備空閑進入隊列等待Y設置兩臺設備工作狀態(tài)均為忙碌零件開始加工零件加工完后離開設置完工設備狀態(tài)為“空閑”設置空閑設備工作狀態(tài)為忙碌零件開始加工零件加工完后離開設置該設備狀態(tài)為“空閑”是否兩臺設備都

3、空閑YN(2)活動循環(huán)圖加工安裝設備空閑設備就緒設備(I、II)循環(huán)等待工人循環(huán)3.6、以第二章中圖2-5所示的并行加工中心系統(tǒng)為對象,建立Petri網模型。t2P1設備II空閑零件離開加工好的零件t3P2加工完畢t2P3P1正在加工開始加工設備I空閑P0t1t1等待加工零件到達t0 P33.7、根據(jù)Petri網的運行規(guī)則,按照t3、t2、t1、t4的順序,重新分析圖3-20所示Petri網模型的運行過程,并將分析結果同例3-5相比較。t4t3P1t1P2P6P3P5t2P4(1)初始狀態(tài)t4t3P1t1P2P6P3P5t2P4(2)t3發(fā)生后t4t3P1t1P2P6P3P5t2P4(3)t2

4、發(fā)生后(4)t1不能發(fā)生 t4t3P1t1P2P6P3P5t2P4(5)t4發(fā)生后4.4、任取一整數(shù)作為種子值,采用第三題中得到的隨機數(shù)發(fā)生器生成隨機數(shù)序列的前200項數(shù)據(jù),并對其統(tǒng)計性能進行檢驗。解:由第3題可得到一個隨機數(shù)發(fā)生器:a=5 b=9 c=3 m=512 xn=5xn-1+3 mod 512un=xn512 取種子值x0=,生成的隨機數(shù)序列前200項數(shù)據(jù)如下:n5xn-1+3xnun n5xn-1+3xnun 13230.264584580.21618820.2722932450.34134130.2812282040.42068200.2910235110.51031030.3

5、025585100.651860.3125535050.733330.3225284800.937581681680.3324033550.98433310.3417782420.1016581220.3512131890.116131010.369484360.125085080.3721831350.1325434950.386781660.1424784300.398333210.1521531050.401608720.16528160.03125413633630.1783830.4218182820.184184180.4314133890.192093450.4419484120

6、.202282280.452063150.2111431190.4678780.22598860.473933930.234334330.4819684320.843752421681200.4921631150.25603910.50578660.n5xn-1+3xnun n5xn-1+3xnun513333330.768283160.5216681320.771583470.536631510.782382380.547582460.7911931690.5512332090.808483360.65625561048240.8116831470.571231230.827382260.5

7、86181060.8311331090.59533210.84548360.601081080.851831830.61543310.869184060.621581580.8720334970.637932810.8824884400.6414083840.758922031550.6519233870.907782660.6619384020.9113333090.6720134770.921548120.6823883400.9363630.6917031670.943183180.708383260.951593570.711633970.962882880.5625724884880

8、.9714434190.7324433950.982098500.7419784420.992532530.7522131650.10012682440.n5xn-1+3xnun n5xn-1+3xnun10112231990.1264784780.1029984860.12723933450.10324333850.12817281920.37510419283920.1299634510.105196342701062138900.1311053290.1074534530.1321481480.10822682200.1337432310.1091103790.

91103983980.1356731610.11119934570.1368082960.11222882400.4687513714834590.1131203179011489838601151933397011619884520.1416231110.11722632150.142558460.1181078540.1432332330.11927327302812512013683440.1457232110.12117231870.1461058340.12

10、29384260.1471731730.1232133850.1488683560.12442842801252143950n5xn-1+3xnun n5xn-1+3xnun1511073490.17648480.093751522482480.177243243017812181940.1541098740.1799734610.155373373015618683320157166312701586381260

11、1596331210160608960.18751857632510.16148348301622418370016318533170.1887482360.16415885201652632630.1907982860.16613182940.19114334090.16714734490.19220480016822482000.193330.16910034910.1941818019593930.171205350.1964684680.17228280.1

12、9723432950.1731431430.19814784540.1747182060.19922732250.175103390.20011281040.對上述數(shù)據(jù)進行參數(shù)檢驗如下:經計算可知,u=1ni=1nui=0. s2=1n-1i=1n(ui-u)2=119916.=0.因此可知統(tǒng)計量v1=12n(u-12)=-1. v2=180n(s2-112)=0.假定顯著性水平=0.05,則查表可知z2=1.96 v1z2,v2z2故可以認為:在顯著性水平=0.05時,該隨機數(shù)序列un總體的均值和方差與均勻分布U(0,1)的均值和方差沒有顯著性的差異。4.5、三角分布的概率密度函數(shù)為fx=2

13、x-ab-am-a axm 2b-xb-ab-m mxb 0 其他試寫出其相應的分布函數(shù),并采用反變換法給出生成該三角分布隨機變量的算法步驟。解:根據(jù)密度函數(shù)f(x)可計算得到x的分布函數(shù)如下:Fx=0 , &xa(x-a)2(b-a)(m-a) , axm (x-m)(2b-x-m)(b-a)(b-m)+ m-ab-a , &mxb1 &xb 采用反變換法生成該三角分布隨機變量的算法步驟如下:計算其反函數(shù)令u=F(x),則其反函數(shù)x=F-1u=b-am-au+a 0um-ab-ab-b-ab-m1-u m-ab-au1則數(shù)列Xn即為所求的指數(shù)分布的隨機變量5.2、根據(jù)第4章復習思考題第6題中

14、得到的結論,生成標準正態(tài)分布N(0,1)的前200項數(shù)據(jù),并根據(jù)這些數(shù)據(jù)分別繪制相應的相關圖、散點圖和直方圖,以檢驗樣本數(shù)據(jù)的獨立性及其分布形式是否為正態(tài)分布。解:由已知條件可生成如下的隨機數(shù)U1U2X1X20.3820.1011.1191.4530.5960.8990.817-0.4210.8850.9580.4780.0410.0140.407-2.429-0.5850.8630.1390.3501.6130.2450.0451.609-1.5650.0320.1641.3471.5650.2200.0171.731-2.8310.2850.343-0.8731.0480.5540.357

15、-0.6781.2900.3720.356-0.8651.0810.9100.466-0.424-0.5730.4260.304-0.433-0.6350.9760.8070.0770.3040.9910.256-0.005-0.0530.9520.0530.2972.3160.7050.8170.3370.5430.9730.466-0.231-1.2260.3000.750-0.002-0.0080.3510.7760.2290.7060.0740.1980.727-1.7800.0640.358-1.473-0.2450.4870.511-1.197-1.0920.3730.9861.3

16、980.1020.0410.2310.3081.6020.0050.9262.908-0.2170.1000.257-0.088-0.8690.7760.680-0.306-0.8250.8090.724-0.106-0.4960.0850.1321.4970.0440.7560.627-0.5250.1480.1740.405-1.5450.3680.5520.712-0.263-0.8220.5550.1810.4550.5140.9700.687-0.095-0.4880.5290.7970.3240.6040.8060.262-0.050-0.5040.1780.8671.2400.5

17、340.1150.0601.937-0.9310.7620.738-0.056-0.2660.9860.9260.1480.3150.9040.545-0.432-0.4580.5010.675-0.5360.1990.4900.1460.728-1.9430.0380.7960.727-0.6680.6720.732-0.105-0.4820.5850.1520.598-1.1150.8920.378-0.343-1.1630.2000.2060.4930.0830.3340.325-0.6721.3220.3000.8020.4960.0190.6960.271-0.114-1.0590.

18、9040.0390.4361.0050.7090.454-0.7941.2100.5170.257-0.046-0.4730.2910.8020.502-0.0060.7890.676-0.310-0.8230.7550.9490.710-0.3150.6190.722-0.173-0.7140.9680.369-0.173-1.2490.8500.557-0.5330.2240.8730.441-0.485-0.1190.2180.8591.1010.3260.2800.703-0.465-0.1860.7070.376-0.5910.7530.3300.0861.2782.1830.977

19、0.286-0.048-0.4670.5340.407-0.9350.5390.9980.8950.0530.1550.8110.9090.543-0.1150.5750.706-0.289-0.8090.4010.1111.0360.4600.8970.386-0.351-1.1100.0960.7780.3690.5210.7840.666-0.354-0.7170.6570.258-0.048-0.4880.7650.700-0.226-0.8350.8590.0030.552-1.0870.6790.9290.793-0.3710.0420.518-2.498-0.0260.9120.

20、9540.4110.1630.5940.558-0.9550.3080.9680.483-0.253-1.2060.2560.8180.680-0.5720.4960.8510.697-0.5370.6680.9270.804-0.3680.4520.1680.621-1.2990.0620.0052.3572.5510.5410.618-0.8210.8880.4930.579-1.045-0.2900.6020.9300.911-0.2040.5340.1320.757-2.0110.0820.576-1.9870.0900.8290.0660.561-0.8640.2710.700-0.

21、5060.0290.4140.366-0.8810.9710.4350.330-0.6211.0240.2110.740-0.110-0.4930.5230.8970.905-0.2640.6030.523-0.9950.0390.5900.585-0.8860.6830.4970.1110.909-1.1410.5930.559-0.9540.3130.7740.2310.0870.8860.7310.587-0.6770.9260.5460.8070.3850.4320.9640.0950.2232.1360.1090.712-0.500-0.0040.8830.1900.1841.668

22、0.0160.1851.1521.4940.5800.666-0.5270.1520.1620.1950.646-1.4320.6780.548-0.8420.9200.2950.541-1.5130.0850.1730.1850.741-1.8330.8520.9480.535-0.0700.2510.432-1.5120.0890.5450.9671.0780.1210.7240.9510.765-0.3160.5700.9410.986-0.0320.2600.1670.819-1.7210.8840.8210.2130.6110.0420.8982.0180.0490.4210.128

23、0.912-1.0720.0300.2050.745-1.7800.6820.8210.3730.4490.4720.479-1.213-1.1810.5850.362-0.6711.2520.8230.311-0.231-1.5180.9900.7720.0180.0830.7290.1630.4121.0000.8080.9260.582-0.1930.2320.382-1.256-1.3870.0900.9121.863-0.3270.8520.573-0.5080.0490.0140.693-1.021-0.1110.7010.8880.642-0.3780.1690.8861.419

24、0.2420.2870.2320.1841.5640.0420.9152.1640.3590.1670.9391.752-0.3550.1220.341-1.112-0.9440.0950.9442.0330.0670.5110.629-0.7970.9210.8360.9740.591-0.1230.4760.1520.707-1.8710.2850.8020.502-0.0060.8080.695-0.221-0.8390.0690.0812.0190.2560.4430.265-0.117-1.0900.2650.8100.599-0.3760.2010.454-1.7171.2280.

25、4080.9361.2290.3620.0940.1750.991-0.1070.4340.1440.797-1.8830.0760.0152.2612.8870.7190.367-0.5450.3930.6600.0200.904-1.5890.8790.0260.502-0.0350.3020.1640.793-1.8340.4600.554-1.177-0.9730.9590.306-0.100-0.9060.2130.2280.2481.7200.7210.9000.654-0.3760.0760.8341.1370.4550.9440.252-0.005-0.0510.5330.20

26、40.3221.6050.7570.595-0.6200.6950.5190.1520.665-1.6700.3820.7660.1330.5410.4960.8420.644-0.4600.1550.7760.3090.6650.8930.1210.3451.7010.6540.0370.896-1.5640.5320.8430.617-0.3910.8500.542-0.5510.3490.2230.719-0.344-0.6750.6790.7670.0910.3950.1710.725-0.302-0.7600.9460.593-0.278-1.0080.3500.598-1.183-

27、0.9240.9650.0080.2653.0870.5070.451-1.111-0.8060.8390.8920.4600.1200.9490.0340.3162.3770.7890.643-0.429-0.4060.7710.686-0.285-0.8480.4460.9511.2110.3060.6750.488-0.8830.8040.4920.479-1.181-1.0990.0460.671-1.183-0.8140.5760.742-0.053-0.2500.4330.7950.3620.5170.9070.9710.4350.0960.0950.732-0.245-0.789

28、0.4150.2290.1751.5300.7700.9900.721-0.1380.9110.571-0.389-0.6830.3180.406-1.256-1.3420.1360.530-1.9630.267所以,由上述數(shù)據(jù)可生成如下圖形:由圖形可知,樣本數(shù)據(jù)大體符合正態(tài)分布的形式,雖然從圖形上來看,X1 的分布與標準正態(tài)分布的形式有一定的差距,但其偏差應該在誤差范圍內,所以可以認為樣本數(shù)據(jù)是獨立的、正態(tài)分布。5.4、分析終態(tài)仿真與穩(wěn)態(tài)仿真這兩種仿真方式的異同。答:相同點:都是對系統(tǒng)進行仿真及輸出分析的方式不同點:終態(tài)仿真結果與系統(tǒng)初始條件有關,而穩(wěn)態(tài)仿真的最終結果是不受初始條件影響的;終

29、態(tài)仿真主要研究的是在規(guī)定時間內的系統(tǒng)行為,穩(wěn)態(tài)仿真更側重于對系統(tǒng)長期運行的穩(wěn)態(tài)行為的關注。5.5、對圖2-1所示的簡單加工系統(tǒng),進行獨立的重復仿真10次,每次仿真運行的長度為200,初始條件為初始隊長q(0)=0,且鉆床設備處于空閑狀態(tài)。仿真運行的結果如下:平均等待時間Dj200: 10.427 14.469 12.780 8.703 12.727 9.206 8.053 28.039 6.228 13.931平均隊長Qj200: 2.098 2.718 2.389 1.596 2.585 1.755 1.724 6.523 1.227 2.779試計算求解該簡單加工系統(tǒng)平均等待時間Dj200

30、和平均隊長Qj200這兩個性能指標的置信度為0.90的置信區(qū)間。解:1-=0.9 =0.1 t29=1.8331(1) 求Dj200的置信區(qū)間由已知數(shù)據(jù)可得,D=Dj=12.456 S2=19110(Dj-12.456)2=37.353D -t2(9)S10=12.456-1.8331*3.7353=8.913D +t2(9)S10=12.456+1.8331*3.7353=15.999平均等待時間Dj200的置信度為0.90的置信區(qū)間為(8.913,15.999)(2) 求Qj200的置信區(qū)間由已知數(shù)據(jù)可得,Q=Qj=2.539 S2=19110(Qj-12.456)2=2.230Q -t2(9)S10=2.539-1.8331*0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論