考研大綱2013考研數(shù)學(xué)二大綱變化對(duì)比表_第1頁(yè)
考研大綱2013考研數(shù)學(xué)二大綱變化對(duì)比表_第2頁(yè)
考研大綱2013考研數(shù)學(xué)二大綱變化對(duì)比表_第3頁(yè)
考研大綱2013考研數(shù)學(xué)二大綱變化對(duì)比表_第4頁(yè)
考研大綱2013考研數(shù)學(xué)二大綱變化對(duì)比表_第5頁(yè)
已閱讀5頁(yè),還剩4頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2013考研數(shù)學(xué)二大綱變化對(duì)比表高等數(shù)學(xué)部分章節(jié)2012大綱2013大綱變化情況及復(fù)習(xí)指南一、 一、函數(shù)、極限、連續(xù)考試內(nèi)容函數(shù)的概念及表示法,函數(shù)的有界性、單調(diào)性、周期性和奇偶性,復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù),基本初等函數(shù)的性質(zhì)及其圖形,初等函數(shù),函數(shù)關(guān)系的建立數(shù)列極限與函數(shù)極限的定義及其性質(zhì),函數(shù)的左極限和右極限,無(wú)窮小量和無(wú)窮大量的概念及其關(guān)系,無(wú)窮小量的性質(zhì)及無(wú)窮小量的比較,極限的四則運(yùn)算,極限存在的兩個(gè)準(zhǔn)則:?jiǎn)握{(diào)有界準(zhǔn)則和夾逼準(zhǔn)則,兩個(gè)重要極限:函數(shù)連續(xù)的概念,函數(shù)間斷點(diǎn)的類(lèi)型,初等函數(shù)的連續(xù)性,閉區(qū)間上連續(xù)函數(shù)的性質(zhì)。考試要求1 理解函數(shù)的概念,掌握函數(shù)的表示法,并會(huì)建立應(yīng)用

2、問(wèn)題的函數(shù)關(guān)系。2 了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性。3 理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念。4 掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念。5 理解極限的概念,理解函數(shù)左極限與右極限的概念以及函數(shù)極限存在與左極限、右極限的關(guān)系。6 掌握極限的性質(zhì)及四則運(yùn)算法則。7 掌握極限存在的兩個(gè)準(zhǔn)則,并會(huì)利用它們求極限,掌握利用兩個(gè)重要極限求極限的方法。8 理解無(wú)窮小量、無(wú)窮大量的概念,掌握無(wú)窮小量的比較方法,會(huì)用等價(jià)無(wú)窮小量求極限。9 理解函數(shù)連續(xù)性的概念(含左連續(xù)和右連續(xù)),會(huì)判別函數(shù)間斷點(diǎn)的類(lèi)型。10. 了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)

3、的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會(huì)應(yīng)用這些性質(zhì)。考試內(nèi)容函數(shù)的概念及表示法,函數(shù)的有界性、單調(diào)性、周期性和奇偶性,復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù),基本初等函數(shù)的性質(zhì)及其圖形,初等函數(shù),函數(shù)關(guān)系的建立數(shù)列極限與函數(shù)極限的定義及其性質(zhì),函數(shù)的左極限和右極限,無(wú)窮小量和無(wú)窮大量的概念及其關(guān)系,無(wú)窮小量的性質(zhì)及無(wú)窮小量的比較,極限的四則運(yùn)算,極限存在的兩個(gè)準(zhǔn)則:?jiǎn)握{(diào)有界準(zhǔn)則和夾逼準(zhǔn)則,兩個(gè)重要極限:函數(shù)連續(xù)的概念,函數(shù)間斷點(diǎn)的類(lèi)型,初等函數(shù)的連續(xù)性,閉區(qū)間上連續(xù)函數(shù)的性質(zhì)。考試要求1理解函數(shù)的概念,掌握函數(shù)的表示法,并會(huì)建立應(yīng)用問(wèn)題的函數(shù)關(guān)系。2了解函數(shù)的有界性、單調(diào)性、周期性和

4、奇偶性。3理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念。4掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念。5理解極限的概念,理解函數(shù)左極限與右極限的概念以及函數(shù)極限存在與左極限、右極限的關(guān)系。6掌握極限的性質(zhì)及四則運(yùn)算法則。7掌握極限存在的兩個(gè)準(zhǔn)則,并會(huì)利用它們求極限,掌握利用兩個(gè)重要極限求極限的方法。8理解無(wú)窮小量、無(wú)窮大量的概念,掌握無(wú)窮小量的比較方法,會(huì)用等價(jià)無(wú)窮小量求極限。9理解函數(shù)連續(xù)性的概念(含左連續(xù)和右連續(xù)),會(huì)判別函數(shù)間斷點(diǎn)的類(lèi)型。10. 了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會(huì)應(yīng)用這些性質(zhì)。無(wú)

5、變化重點(diǎn)復(fù)習(xí):極限的定義及性質(zhì)、極限存在的兩個(gè)準(zhǔn)則、兩個(gè)重要極限、各種類(lèi)型函數(shù)極限的求法、無(wú)窮小量、函數(shù)間斷點(diǎn)、連續(xù)函數(shù)的性質(zhì)等本章基礎(chǔ)內(nèi)容較多,復(fù)習(xí)要扎實(shí)、穩(wěn)步進(jìn)行,以保證后面各章節(jié)的順利復(fù)習(xí)。二、一元函數(shù)微分學(xué)考試內(nèi)容導(dǎo)數(shù)和微分的概念,導(dǎo)數(shù)的幾何意義和物理意義,函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系,平面曲線的切線與法線,導(dǎo)數(shù)和微分的四則運(yùn)算,基本初等函數(shù)的導(dǎo)數(shù),復(fù)合函數(shù)、反函數(shù)和隱函數(shù)以及參數(shù)方程所確定的函數(shù)的微分法,高階導(dǎo)數(shù),一階微分形式的不變性,微分中值定理,洛必達(dá)(LHospital)法則,函數(shù)單調(diào)性的判別,函數(shù)的極值,函數(shù)圖形的凹凸性、拐點(diǎn)及漸近線,函數(shù)圖形的描繪,函數(shù)的最大值與最小值,

6、弧微分,曲率的概念,曲率圓與曲率半徑考試要求1 理解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會(huì)求平面曲線的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,會(huì)用導(dǎo)數(shù)描述一些物理量,理解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系。2 掌握導(dǎo)數(shù)的四則運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的導(dǎo)數(shù)公式。了解微分的四則運(yùn)算法則和一階微分形式的不變性,會(huì)求函數(shù)的微分。3 了解高階導(dǎo)數(shù)的概念,會(huì)求簡(jiǎn)單函數(shù)的高階導(dǎo)數(shù)。4 會(huì)求分段函數(shù)的導(dǎo)數(shù),會(huì)求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導(dǎo)數(shù)。5 理解并會(huì)用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并會(huì)用

7、柯西(Cauchy)中值定理。6 掌握用洛必達(dá)法則求未定式極限的方法。7 理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)最大值和最小值的求法及其應(yīng)用。8 會(huì)用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間(a,b)內(nèi),設(shè)函數(shù)f(x)具有二階導(dǎo)數(shù),當(dāng)時(shí),f(x)的圖形是凹的;當(dāng)時(shí),f(x)的圖形是凸的),會(huì)求函數(shù)圖形的拐點(diǎn)以及水平、鉛直和斜漸近線,會(huì)描繪函數(shù)的圖形。9 了解曲率、曲率圓與曲率半徑的概念,會(huì)計(jì)算曲率和曲率半徑??荚噧?nèi)容導(dǎo)數(shù)和微分的概念,導(dǎo)數(shù)的幾何意義和物理意義,函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系,平面曲線的切線與法線,導(dǎo)數(shù)和微分的四則運(yùn)算,基本初等函數(shù)的導(dǎo)數(shù),復(fù)合函數(shù)

8、、反函數(shù)和隱函數(shù)以及參數(shù)方程所確定的函數(shù)的微分法,高階導(dǎo)數(shù),一階微分形式的不變性,微分中值定理,洛必達(dá)(LHospital)法則,函數(shù)單調(diào)性的判別,函數(shù)的極值,函數(shù)圖形的凹凸性、拐點(diǎn)及漸近線,函數(shù)圖形的描繪,函數(shù)的最大值與最小值,弧微分,曲率的概念,曲率圓與曲率半徑考試要求1理解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會(huì)求平面曲線的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,會(huì)用導(dǎo)數(shù)描述一些物理量,理解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系。2掌握導(dǎo)數(shù)的四則運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的導(dǎo)數(shù)公式。了解微分的四則運(yùn)算法則和一階微分形式的不變性,會(huì)求函數(shù)的微分。3了解高階

9、導(dǎo)數(shù)的概念,會(huì)求簡(jiǎn)單函數(shù)的高階導(dǎo)數(shù)。4會(huì)求分段函數(shù)的導(dǎo)數(shù),會(huì)求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導(dǎo)數(shù)。5理解并會(huì)用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并會(huì)用柯西(Cauchy)中值定理。6掌握用洛必達(dá)法則求未定式極限的方法。7理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)最大值和最小值的求法及其應(yīng)用。8會(huì)用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間(a,b)內(nèi),設(shè)函數(shù)f(x)具有二階導(dǎo)數(shù),當(dāng)時(shí),f(x)的圖形是凹的;當(dāng)時(shí),f(x)的圖形是凸的),會(huì)求函數(shù)圖形的拐點(diǎn)以及水平、鉛直和斜漸近線,會(huì)描繪函數(shù)的圖形。9

10、了解曲率、曲率圓與曲率半徑的概念,會(huì)計(jì)算曲率和曲率半徑。無(wú)變化重點(diǎn)復(fù)習(xí): 導(dǎo)數(shù)的定義、函數(shù)可導(dǎo)性與連續(xù)性的關(guān)系、各類(lèi)函數(shù)的求導(dǎo)法、微分中值定理、洛必達(dá)法則、函數(shù)性態(tài)等三、一元函數(shù)積分學(xué)考試內(nèi)容原函數(shù)和不定積分的概念,不定積分的基本性質(zhì),基本積分公式,定積分的概念和基本性質(zhì),定積分中值定理,積分上限的函數(shù)及其導(dǎo)數(shù),牛頓萊布尼茨(Newton-Leibniz)公式,不定積分和定積分的換元積分法與分部積分法,有理函數(shù)、三角函數(shù)的有理式和簡(jiǎn)單無(wú)理函數(shù)的積分,反常(廣義)積分,定積分的應(yīng)用考試要求1 理解原函數(shù)的概念,理解不定積分與定積分的概念。2 掌握不定積分的基本公式,掌握不定積分和定積分的性質(zhì)及定

11、積分中值定理,掌握換元積分法與分部積分法。3 會(huì)求有理函數(shù)、三角函數(shù)有理式和簡(jiǎn)單無(wú)理函數(shù)的積分。4 理解積分上限的函數(shù),會(huì)求它的導(dǎo)數(shù),掌握牛頓萊布尼茨公式。5 了解反常積分的概念,會(huì)計(jì)算反常積分。6 掌握用定積分表達(dá)和計(jì)算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長(zhǎng)、旋轉(zhuǎn)體的體積及側(cè)面積、平等截面面積為已知的立體體積、功、引力、壓力、質(zhì)心、形心等)及函數(shù)的平均值??荚噧?nèi)容原函數(shù)和不定積分的概念,不定積分的基本性質(zhì),基本積分公式,定積分的概念和基本性質(zhì),定積分中值定理,積分上限的函數(shù)及其導(dǎo)數(shù),牛頓萊布尼茨(Newton-Leibniz)公式,不定積分和定積分的換元積分法與分部積分法,有理函

12、數(shù)、三角函數(shù)的有理式和簡(jiǎn)單無(wú)理函數(shù)的積分,反常(廣義)積分,定積分的應(yīng)用考試要求1理解原函數(shù)的概念,理解不定積分與定積分的概念。2掌握不定積分的基本公式,掌握不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法與分部積分法。3會(huì)求有理函數(shù)、三角函數(shù)有理式和簡(jiǎn)單無(wú)理函數(shù)的積分。4理解積分上限的函數(shù),會(huì)求它的導(dǎo)數(shù),掌握牛頓萊布尼茨公式。5了解反常積分的概念,會(huì)計(jì)算反常積分。6掌握用定積分表達(dá)和計(jì)算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長(zhǎng)、旋轉(zhuǎn)體的體積及側(cè)面積、平等截面面積為已知的立體體積、功、引力、壓力、質(zhì)心、形心等)及函數(shù)的平均值。無(wú)變化重點(diǎn)復(fù)習(xí):不定積分的概念和性質(zhì)、基本積分公式、

13、牛頓萊布尼茲公式、換元積分法與分部積分法、反常積分、定積分的應(yīng)用等四、多元函數(shù)微積分學(xué)考試內(nèi)容多元函數(shù)的概念,二元函數(shù)的幾何意義,二元函數(shù)的極限與連續(xù)的概念,有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì),多元函數(shù)的偏導(dǎo)數(shù)和全微分,多元復(fù)合函數(shù)、隱函數(shù)的求導(dǎo)法,二階偏導(dǎo)數(shù),多元函數(shù)的極值和條件極值、最大值和最小值,二重積分的概念、基本性質(zhì)和計(jì)算考試要求1 了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義。2 了解二元函數(shù)的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì)。3 了解多元函數(shù)偏導(dǎo)數(shù)與全微分的概念,會(huì)求多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù),會(huì)求全微分,了解隱函數(shù)存在定理,會(huì)求多元隱函數(shù)的偏導(dǎo)數(shù)。4 了解多元函

14、數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會(huì)求二元函數(shù)的極值,會(huì)用拉格朗日乘數(shù)法求條件極值,會(huì)求簡(jiǎn)單多元函數(shù)的最大值和最小值,并會(huì)解決一些簡(jiǎn)單的應(yīng)用題。5 了解二重積分的概念與基本性質(zhì),掌握二重積分(直角坐標(biāo)、極坐標(biāo))的計(jì)算方法??荚噧?nèi)容多元函數(shù)的概念,二元函數(shù)的幾何意義,二元函數(shù)的極限與連續(xù)的概念,有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì),多元函數(shù)的偏導(dǎo)數(shù)和全微分,多元復(fù)合函數(shù)、隱函數(shù)的求導(dǎo)法,二階偏導(dǎo)數(shù),多元函數(shù)的極值和條件極值、最大值和最小值,二重積分的概念、基本性質(zhì)和計(jì)算考試要求1.了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義。2.了解二元函數(shù)的極限與

15、連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì)。3.了解多元函數(shù)偏導(dǎo)數(shù)與全微分的概念,會(huì)求多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù),會(huì)求全微分,了解隱函數(shù)存在定理,會(huì)求多元隱函數(shù)的偏導(dǎo)數(shù)。4.了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會(huì)求二元函數(shù)的極值,會(huì)用拉格朗日乘數(shù)法求條件極值,會(huì)求簡(jiǎn)單多元函數(shù)的最大值和最小值,并會(huì)解決一些簡(jiǎn)單的應(yīng)用題。5.了解二重積分的概念與基本性質(zhì),掌握二重積分(直角坐標(biāo)、極坐標(biāo))的計(jì)算方法。無(wú)變化重點(diǎn)復(fù)習(xí):二元函數(shù)的極限與連續(xù)的概念和性質(zhì)、多元函數(shù)的偏導(dǎo)數(shù)、多元復(fù)合函數(shù)、隱函數(shù)的求導(dǎo)法,二階偏導(dǎo)數(shù),多元函數(shù)的極值和條件極值

16、、最大值和最小值,二重積分的概念、基本性質(zhì)和計(jì)算等五、常微分方程考試內(nèi)容常微分方程的基本概念,變量可分離的微分方程,齊次微分方程,一階線性微分方程,可降階的高階微分方程,線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理,二階常系數(shù)齊次線性微分方程,高于二階的某些常系數(shù)齊次線性微分方程,簡(jiǎn)單的二階常系數(shù)非齊次線性微分方程,微分方程的簡(jiǎn)單應(yīng)用考試要求1 了解微分方程及其階、解、通解、初始條件和特解等概念。2 掌握變量可分離的微分方程及一階線性微分方程的解法,會(huì)解齊次微分方程。3 會(huì)用降階法解下列形式的微分方程: 和。4 理解二階線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理。5 掌握二階常系數(shù)齊次線性微分方程的解法,并會(huì)解

17、某些高于二階的常系數(shù)齊次線性微分方程。6 會(huì)解自由項(xiàng)為多項(xiàng)式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)以及它們的和與積的二階常系數(shù)非齊次線性微分方程。7 會(huì)用微分方程解決一些簡(jiǎn)單的應(yīng)用問(wèn)題。考試內(nèi)容常微分方程的基本概念,變量可分離的微分方程,齊次微分方程,一階線性微分方程,可降階的高階微分方程,線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理,二階常系數(shù)齊次線性微分方程,高于二階的某些常系數(shù)齊次線性微分方程,簡(jiǎn)單的二階常系數(shù)非齊次線性微分方程,微分方程的簡(jiǎn)單應(yīng)用考試要求1.了解微分方程及其階、解、通解、初始條件和特解等概念。2掌握變量可分離的微分方程及一階線性微分方程的解法,會(huì)解齊次微分方程。3會(huì)用降階法解下列形式的微

18、分方程: 和。4.理解二階線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理。5.掌握二階常系數(shù)齊次線性微分方程的解法,并會(huì)解某些高于二階的常系數(shù)齊次線性微分方程。6.會(huì)解自由項(xiàng)為多項(xiàng)式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)以及它們的和與積的二階常系數(shù)非齊次線性微分方程。7.會(huì)用微分方程解決一些簡(jiǎn)單的應(yīng)用問(wèn)題。無(wú)變化線性代數(shù)部分章節(jié)2012大綱2013大綱變化情況一、 行列式考試內(nèi)容行列式的概念和基本性質(zhì),行列式按行(列)展開(kāi)定理考試要求1 了解行列式的概念,掌握行列式的性質(zhì)。2 會(huì)應(yīng)用行列式的性質(zhì)和行列式按行(列)展開(kāi)定理計(jì)算行列式??荚噧?nèi)容行列式的概念和基本性質(zhì),行列式按行(列)展開(kāi)定理考試要求1.了解行列式的概

19、念,掌握行列式的性質(zhì)。2.會(huì)應(yīng)用行列式的性質(zhì)和行列式按行(列)展開(kāi)定理計(jì)算行列式。無(wú)變化二、 矩陣考試內(nèi)容矩陣的概念,矩陣的線性運(yùn)算,矩陣的乘法,方陣的冪,方陣乘積的行列式,矩陣的轉(zhuǎn)置,逆矩陣的概念和性質(zhì),矩陣可逆的充分必要條件,伴隨矩陣,矩陣的初等變換,初等矩陣,矩陣的秩,矩陣的等價(jià),分塊矩陣及其運(yùn)算考試要求1 理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對(duì)角矩陣、三角矩陣、對(duì)稱(chēng)矩陣、反對(duì)稱(chēng)矩陣和正交矩陣以及它們的性質(zhì)。2 掌握矩陣的線性運(yùn)算、乘法、轉(zhuǎn)置以及它們的運(yùn)算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì)。3 理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,

20、會(huì)用伴隨矩陣求逆矩陣。4 理解矩陣的初等變換的概念,了解初等矩陣的性質(zhì)和矩陣等價(jià)的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的方法。5 了解分塊矩陣及其運(yùn)算??荚噧?nèi)容矩陣的概念,矩陣的線性運(yùn)算,矩陣的乘法,方陣的冪,方陣乘積的行列式,矩陣的轉(zhuǎn)置,逆矩陣的概念和性質(zhì),矩陣可逆的充分必要條件,伴隨矩陣,矩陣的初等變換,初等矩陣,矩陣的秩,矩陣的等價(jià),分塊矩陣及其運(yùn)算考試要求1 理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對(duì)角矩陣、三角矩陣、對(duì)稱(chēng)矩陣、反對(duì)稱(chēng)矩陣和正交矩陣以及它們的性質(zhì)。2 掌握矩陣的線性運(yùn)算、乘法、轉(zhuǎn)置以及它們的運(yùn)算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì)。3 理解逆

21、矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會(huì)用伴隨矩陣求逆矩陣。4 理解矩陣的初等變換的概念,了解初等矩陣的性質(zhì)和矩陣等價(jià)的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的方法。5. 了解分塊矩陣及其運(yùn)算。無(wú)變化三、 向量考試內(nèi)容向量的概念,向量的線性組合與線性表示,向量組的線性相關(guān)與線性無(wú)關(guān),向量組的極大線性無(wú)關(guān)組,等價(jià)向量組,向量組的秩,向量組的秩與矩陣的秩之間的關(guān)系,向量的內(nèi)積,線性無(wú)關(guān)向量組的正交規(guī)范化方法考試要求1 理解n維向量、向量的線性組合與線性表示的概念。2 理解向量組線性相關(guān)、線性無(wú)關(guān)的概念,掌握向量組線性相關(guān)、線性無(wú)關(guān)的有關(guān)性質(zhì)

22、及判別法。3 了解向量組的極大線性無(wú)關(guān)組和向量組的秩的概念,會(huì)求向量組的極大線性無(wú)關(guān)組及秩。4 了解向量組等價(jià)的概念,了解矩陣的秩與其行(列)向量組的秩之間的關(guān)系。5 了解內(nèi)積的概念,掌握線性無(wú)關(guān)向量組正交規(guī)范化的施密特(Schmidt)方法??荚噧?nèi)容向量的概念,向量的線性組合與線性表示,向量組的線性相關(guān)與線性無(wú)關(guān),向量組的極大線性無(wú)關(guān)組,等價(jià)向量組,向量組的秩,向量組的秩與矩陣的秩之間的關(guān)系,向量的內(nèi)積,線性無(wú)關(guān)向量組的正交規(guī)范化方法考試要求1 理解n維向量、向量的線性組合與線性表示的概念。2 理解向量組線性相關(guān)、線性無(wú)關(guān)的概念,掌握向量組線性相關(guān)、線性無(wú)關(guān)的有關(guān)性質(zhì)及判別法。3 了解向量組

23、的極大線性無(wú)關(guān)組和向量組的秩的概念,會(huì)求向量組的極大線性無(wú)關(guān)組及秩。4 了解向量組等價(jià)的概念,了解矩陣的秩與其行(列)向量組的秩之間的關(guān)系。5 了解內(nèi)積的概念,掌握線性無(wú)關(guān)向量組正交規(guī)范化的施密特(Schmidt)方法。無(wú)變化四、 線性方程組考試內(nèi)容線性方程組的克萊姆(Crammer)法則,齊次線性方程組有非零解的充分必要條件,非齊次線性方程組有解的充分必要條件,線性方程組解的性質(zhì)和解的結(jié)構(gòu),齊次線性方程組的基礎(chǔ)解系和通解,非齊次線性方程組的通解考試要求1 會(huì)用克萊姆法則。2 理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件。3 理解齊次線性方程組的基礎(chǔ)解系及通解的

24、概念,掌握齊次線性方程組的基礎(chǔ)解系和通解的求法。4 理解非齊次線性方程組解的結(jié)構(gòu)及通解的概念。5 會(huì)用初等行變換求解線性方程組??荚噧?nèi)容線性方程組的克拉默(Crammer)法則,齊次線性方程組有非零解的充分必要條件,非齊次線性方程組有解的充分必要條件,線性方程組解的性質(zhì)和解的結(jié)構(gòu),齊次線性方程組的基礎(chǔ)解系和通解,非齊次線性方程組的通解考試要求1 會(huì)用克拉默法則。2 理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件。3 理解齊次線性方程組的基礎(chǔ)解系及通解的概念,掌握齊次線性方程組的基礎(chǔ)解系和通解的求法。4 理解非齊次線性方程組解的結(jié)構(gòu)及通解的概念。5 會(huì)用初等行變換求解線性方程

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論