版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、4 THE EIGENVALUE PROBLEM,Overview,In section 4.4 we move on to the general case, the eigenvalue problem for (nn) matrices. The general case requires several results from determinant theory, and these are summarized in section 4.2.,The eigenvalue problem is of great practical importance in mathematic
2、s and applications.,In section 4.1 we introduce the eigenvalue problem for the special case of (22) matrices; this special case can be handled using ideas developed in Chapter 1.,Core sections,The eigenvalue problem for (22) matrices Eigenvalues and the characteristic polynomial Eigenvectors and eig
3、enspaces Similarity transformations and diagonalization,4.1 The eigenvalue problem for (22) matrices,All scalars,Nonzero solution/ Infinitely many solution,1. The eigenvalue problem,The Geometric interpretation of Eigenvalue and eigenvector,The calculation of Eigenvalue and eigenvector,Homogeneous S
4、ystems,Eigenvalue and eigenvectors for (22) matrices,Example: Find all eigenvalues and eigenvectors of A, where,4.2 Determinants and the eigenvalue problem (omit),4.3 Elementary operations and determinants (omit),4.4 Eigenvalues and the characteristic polynomial,Example: Use the singularity test to
5、determine the eigenvalues of the matrix A, where,In this section we focus on part 1, finding the eigenvalues.,The characteristic polynomial,characteristic polynomial,characteristic equation,(1) an (nn) matrix can have no more than n distinct eigenvalues.,(2) an (nn) matrix always has at least one ei
6、genvalue.,Special Results,4.5 Eigenvectors and Eigenspaces,Eigenspaces and Geometric Multiplicity,Example Determine the algebraic and geometric multiplicities for the eigenvalues of A,Proof:,Corollary: Let A be an (nn) matrix. If A has n distinct eigenvalues, then A has a set of n linearly independe
7、nt eigenvectors.,4.7 Similarity Transformations And Diagonalization,In Chapter 1, we saw that two linear systems of equations have the same solution if their augmented matrices are row equivalent. In this chapter, we are interested in identifying classes of matrices that have the same eigenvalues.,D
8、efinition: The (nn) matrices A and B are said to be similar (denoted AB) if there is a nonsingular (nn) matrix S such that B=S-1AS.,Similarity,Theorem: If A and B are similar (nn) matrices, then A and B have the same eigenvalues. Moreover, these eigenvalues have the same algebraic multiplicity.,Note
9、: not generally have the same eigenvectors.,D is a diagonal matrix.,Diagonalization,Theorem: An (nn) matrix A is diagonalizable if and only if A possesses a set of n linearly independent eigenvectors.,Theorem: Let A be an (nn) matrix with n distinct eigenvalues. Then A is diagonalizable.,Whenever an
10、 (nn) matrix A is similar to a diagonal matrix, we say that A is diagonalizable.,Proof:,Proof:,Example Show that A is diagonalizable ,where,Orthogonal Matrices,A remarkable and useful fact about symmetric matrices is that they are always diagonalizable. Moreover, the diagonalization of a symmetric m
11、atrix A can be accomplished with a special type of matrix know as an orthogonal matrix.,Definition: A real (nn) matrix Q is called an orthogonal matrix if Q is invertible and Q-1=QT.,Theorem: Let Q be an (nn) orthogonal matrix. If X is in Rn, then |Q X |=| X |. If X and Y are in Rn , then (Q X)T(QY)
12、= X TY. det(Q)=1.,Diagonalizaiton of Symmetric Matrices,We conclude this section by showing that every symmetric matrix can be diagonalized by an orthogonal matrix.,Theorem: Let A be an (nn) real symmetric matrix, then the eigenvalues of A are real. (P319),Corollary: Let A be a real (nn) symmetric matri
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025山東海洋藍鯤運營有限公司招聘7人筆試歷年參考題庫附帶答案詳解
- 2025安徽蚌埠市選聘龍子湖區(qū)國有企業(yè)有關管理人員現場及綜合測評筆試歷年參考題庫附帶答案詳解
- 2025內蒙古錫林郭勒盟錫林熱電廠招聘15名輔助崗位工作人員筆試歷年參考題庫附帶答案詳解
- 2020-2021年考物理電流和電路及答案經典
- 2020高考語文模擬試題擴展語段分類匯編(及答案)
- 2026年浙江省金華市技能鑒定考評員上崗證考核試卷及答案
- 2025年醫(yī)院特殊藥品管理培訓考核試題(附答案)
- 2025年家庭醫(yī)生團隊試題及答案
- 學校德育工作總結模板
- 教師家訪工作總結
- 機械設備入股合同范本
- 2024-2025學年河南省鄭州市高新區(qū)七年級(上)期末數學試卷
- 商場服務合同范本
- 江蘇省無錫市澄宜六校聯盟2025-2026學年高三上學期12月學情調研生物試題(含答案)
- 2026年濟源職業(yè)技術學院單招綜合素質考試題庫附答案詳解
- 2025年臨床流行病學試題及答案
- 廣東省廣州市白云區(qū)2024-2025學年四年級上冊期末考試數學試卷(含答案)
- 2025年度公司員工個人年終工作總結匯報
- 【生 物】2025-2026學年人教版生物八年級上冊復習提綱
- 鋼結構工程監(jiān)理合同
- 2026貴州能源集團有限公司第一批綜合管理崗招聘41人考試模擬卷帶答案解析
評論
0/150
提交評論