《高數(shù)之不定積分》PPT課件.ppt_第1頁(yè)
《高數(shù)之不定積分》PPT課件.ppt_第2頁(yè)
《高數(shù)之不定積分》PPT課件.ppt_第3頁(yè)
《高數(shù)之不定積分》PPT課件.ppt_第4頁(yè)
《高數(shù)之不定積分》PPT課件.ppt_第5頁(yè)
已閱讀5頁(yè),還剩26頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1,第五章 定積分,定積分和不定積分是積分學(xué)的兩個(gè),一種認(rèn)識(shí)問(wèn)題、分析問(wèn)題、解決問(wèn)題的,definite integral,不定積分側(cè)重于基本積分法的訓(xùn)練,而定積分則完整地體現(xiàn)了積分思想 -,主要組成部分.,思想方法.,2,第一節(jié) 定積分的概念與性質(zhì),定積分問(wèn)題舉例,定積分的定義,函數(shù)的可積性,定積分的意義,定 積 分,定積分的性質(zhì),definite integral,3,1.曲邊梯形的面積,求由連續(xù)曲線,一、定積分問(wèn)題舉例,4,用矩形面積,(五個(gè)小矩形),(十個(gè)小矩形),思想,近似代替曲邊梯形面積,5,四個(gè)步驟來(lái)求面積A.,(1) 分割,(2) 近似,6,(3) 求和,矩形面積之和為曲邊梯形面積A的近似值.,(4) 取極限,取極限,無(wú)限細(xì)分,極限值就是曲邊梯形的面積:,7,(1) 分割,(3) 求和,(4) 取極限,路程的精確值,(2) 取近似,某時(shí)刻的速度,2.變速直線運(yùn)動(dòng)的路程,已知速度,求物體在這段時(shí)間內(nèi)所經(jīng)過(guò)的直線距離 s .,8,二、定積分的定義,設(shè)函數(shù)f (x)在a,b上有界,定義,任取,并作和,記,(1) 任意,(2),(3),(4),9,被積函數(shù),被積表達(dá)式,積分和,怎樣的分法,也不論在小區(qū)間,上點(diǎn),怎樣的取法,只要當(dāng),和S總趨于確定的,極限I,稱極限I為函數(shù) f ( x ) 在區(qū)間a,b上的,定積分.,積分下限,積分上限,積分變量,a,b積分區(qū)間,如果不論對(duì),10,(2),定積分與變量記號(hào)無(wú)關(guān)性!,定積分是一個(gè)數(shù),只依賴于被積函數(shù)和積分區(qū)間,,有關(guān);,無(wú)關(guān).,與積分變量的記號(hào)無(wú)關(guān).,11,曲邊梯形的面積,曲邊梯形面積的負(fù)值,1. 幾何意義,三、定積分的意義,各部分面積的 代數(shù)和!,12,例,2. 物理意義,從時(shí)刻 t = a 到時(shí)刻 t = b 所經(jīng)過(guò)的路程 s.,作直線運(yùn)動(dòng)的物體,定積分,表示以變速,13,定理,或,黎曼 德國(guó)數(shù)學(xué)家(18261866),四、關(guān)于函數(shù)的可積性,且只有有限個(gè)間斷點(diǎn),可積.,當(dāng)函數(shù),的定積分存在時(shí),可積.,黎曼可積,充分條件,14,解,例 用定義計(jì)算由拋物線,和x軸所圍成的曲邊梯形面積.,直線,取,15,對(duì)定積分的補(bǔ)充規(guī)定,說(shuō)明,五、定積分的性質(zhì),假定定積分都存在,不考慮積分上下限的大小,16,證,(可以推廣到有限多個(gè)函數(shù)和的情況),性質(zhì)1,17,證,性質(zhì)2,線性性質(zhì).,18,補(bǔ)充,例,(定積分對(duì)于積分區(qū)間具有可加性),性質(zhì)3,假設(shè),的相對(duì)位置如何.,不論,19,證,性質(zhì)4,性質(zhì)5,如果在區(qū)間,則,20,性質(zhì)5-推論1,證,如果在區(qū)間,則,于是,性質(zhì)5,如果在區(qū)間,則,21,解,令,于是,比較積分值,和,的大小.,例,22,證,性質(zhì)5-推論2,性質(zhì)5,如果在區(qū)間,則,23,證,(此性質(zhì)可用于估計(jì)積分值的大致范圍),性質(zhì)6,分別是函數(shù),最大值及最小值.,則,24,解,估計(jì)積分,例,25,解,估計(jì)積分,例,26,證,閉區(qū)間上連續(xù)函數(shù)介值定理:,性質(zhì)7(定積分中值定理),連續(xù),至少存在一點(diǎn),積分中值公式,27,定理用途,性質(zhì)7(定積分中值定理),平均值公式,求連續(xù)變量的平均值?,如何去掉積分號(hào)來(lái)表示積分值.,28,積分中值公式的幾何解釋,曲邊梯形的面積,=矩形的面積,29,例,證,由積分中值定理:,(a為常數(shù)),30,3. 定積分的性質(zhì),(注意估值性質(zhì)、積分中值定理的應(yīng)用),4. 典型問(wèn)題,(1) 估計(jì)積分值;,(2) 不計(jì)算定積分比較積分大小.,六、小結(jié),1. 定積分的實(shí)質(zhì): 特殊和式的極限.,2. 定積分的思想和方法:,以直代曲、以勻代變.,四步曲:,分割、,近似

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論