高中學(xué)生數(shù)學(xué)思維障礙的表現(xiàn)形式及解決方案_第1頁
高中學(xué)生數(shù)學(xué)思維障礙的表現(xiàn)形式及解決方案_第2頁
高中學(xué)生數(shù)學(xué)思維障礙的表現(xiàn)形式及解決方案_第3頁
高中學(xué)生數(shù)學(xué)思維障礙的表現(xiàn)形式及解決方案_第4頁
高中學(xué)生數(shù)學(xué)思維障礙的表現(xiàn)形式及解決方案_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、高中學(xué)生數(shù)學(xué)思維障礙的表現(xiàn)形式及解決方案 江蘇省溧陽中學(xué) 費(fèi)志新 聯(lián)系電話通訊地址:江蘇省溧陽市溧城鎮(zhèn)南環(huán)西路88號 郵編 213300高中數(shù)學(xué)教學(xué)大綱中明確指出:思維能力主要是指:會觀察、實驗、比較、猜想、分析、綜合、抽象和概括;會用歸納、演繹和類比進(jìn)行推理;會合乎邏輯地、準(zhǔn)確地闡述自己的思想和觀點(diǎn);能運(yùn)用數(shù)學(xué)概念、思想和方法,辨明數(shù)學(xué)關(guān)系,形成良好的思維品質(zhì)。我們認(rèn)為,大綱中對思維能力的這一闡述是準(zhǔn)確的、科學(xué)的,反映了心理學(xué)對思維能力研究的最新成果,對我國當(dāng)前的數(shù)學(xué)教學(xué)具有重要的指導(dǎo)意義。但在教學(xué)實踐中經(jīng)常聽到學(xué)生有這樣的反應(yīng):上課聽講感覺很容易,但等到自己動手

2、去解決問題的時候又感覺千頭萬緒不知從何下手。為什么會出現(xiàn)這樣的現(xiàn)象?關(guān)鍵在于“教”和“學(xué)”兩方面的協(xié)調(diào)和不和諧性。學(xué)生不懂得如何去思考,長期以來形成的數(shù)學(xué)思維方式是遇到問題以后去照搬照套現(xiàn)成的模式,而不是去分析問題條件和結(jié)論的差異。學(xué)生不知道如何去思考問題,學(xué)生的數(shù)學(xué)思維存在障礙。因此分析數(shù)學(xué)思維障礙形成的原因,探索突破思維障礙的方法對我們的高中數(shù)學(xué)教學(xué)有著很重要的意義。(一)數(shù)學(xué)思維障礙形成的原因:布魯納的認(rèn)知發(fā)展理論認(rèn)為:學(xué)習(xí)本身是一個認(rèn)識的過程。在這個過程中,個體的學(xué)習(xí)總是要通過已知的內(nèi)部認(rèn)知結(jié)構(gòu),對“從外到內(nèi)”的輸入信息進(jìn)行整理加工,以一種易于接受的方式加以存儲,作為個體的學(xué)生在認(rèn)識新

3、知識的過程中總是通過提取舊知識去吸納新知識,新舊知識在人腦中不斷地相互作用和聯(lián)系,使原有的認(rèn)知結(jié)構(gòu)不斷分化和重新組合,從而使學(xué)生獲得新知識,促成新的認(rèn)知結(jié)構(gòu)的建立和完善。但是這種認(rèn)知的過程不是一次就能成功的,一方面如果我們在課前的準(zhǔn)備中如果不能正確了解學(xué)生原有的認(rèn)知結(jié)構(gòu)而只是按照自己的思維或只是簡單了解去進(jìn)行灌輸式的教學(xué),當(dāng)然會造成學(xué)生的思維障礙;另一方面,當(dāng)新舊知識在學(xué)生的人腦中重新組合時學(xué)生如果不能找到“連接點(diǎn)”時,新的知識的理解就會產(chǎn)生偏頗。所以如果我們的教學(xué)不能從實際出發(fā),學(xué)生的認(rèn)知結(jié)構(gòu)不能順利地建立的話,勢必會造成學(xué)生在新知識認(rèn)識上的不足,理解上的偏頗,思維上的障礙,提高數(shù)學(xué)能力就只

4、能是一句空話。(二) 數(shù)學(xué)思維障礙的表現(xiàn)形式: 由于高中數(shù)學(xué)是建立在小學(xué)、初中數(shù)學(xué)教學(xué)的基礎(chǔ)上的,而作為個體的學(xué)生的數(shù)學(xué)基礎(chǔ)、思維方式、習(xí)慣也各不相同,所以數(shù)學(xué)思維障礙表現(xiàn)也各不相同,具體來說有以下幾種:1數(shù)學(xué)思維的表象性:由于高中數(shù)學(xué)概念的抽象性,學(xué)生在學(xué)習(xí)過程中,對于知識發(fā)生的過程不會主動地進(jìn)行深入的理解和思考,對知識的理解僅僅停留在理解的表象層面上,不太可能形成抽象的概念理解,所以對知識的理解不可避免地存在片面性,不容易去把握事物的本質(zhì)。例如在函數(shù)單調(diào)性的教學(xué)中:證明:函數(shù)在上單調(diào)遞減。不少同學(xué)給出以下證明:設(shè),則,則,所以,所以函數(shù)在上單調(diào)遞減。由于學(xué)生對應(yīng)用定義證明函數(shù)單調(diào)性的實質(zhì)還

5、沒有形成抽象的概念,所以在證明過程中哪些結(jié)論能夠使用,哪些不能使用還不明確,造成了這樣的循環(huán)論證的現(xiàn)象。而有些同學(xué)已經(jīng)感覺到這樣的證明不夠妥當(dāng),但又找不到符合要求的嚴(yán)密的理論依據(jù),不得已也采取了這樣的證明。2數(shù)學(xué)思維的不完整性:數(shù)學(xué)思維講究的是思維的嚴(yán)謹(jǐn)性和推理的嚴(yán)密性。但高中學(xué)生的認(rèn)知結(jié)構(gòu)正處于形成階段,不可避免地存在思維的不嚴(yán)密性。對問題的解決易受原有認(rèn)知結(jié)構(gòu)的影響,習(xí)慣于去套用現(xiàn)成的解題模式。例如在數(shù)列的求和教學(xué)中:求和S= 絕大部分的同學(xué)給出這樣的答案: 雖然抓住了條件中各項的特征,但對于等比數(shù)列前項和使用的條件:各項均不等于零,公比不為1沒有去作深入探討,對問題結(jié)論缺乏多角度的分析和

6、判斷,缺乏對自我思維進(jìn)程的調(diào)控,從而造成障礙。3數(shù)學(xué)思維定勢的影響:經(jīng)過多年的數(shù)學(xué)學(xué)習(xí),高中生已經(jīng)有了較豐富的解題經(jīng)驗,初步形成了自己的思維方法和思路,所以在問題的解決中往往從以往的解題經(jīng)驗中出發(fā),套用原有的思路,對自己的思維方法深信不疑,不能根據(jù)新的對象的特點(diǎn)作出正確的判斷,阻礙了新的更合理有效的認(rèn)知結(jié)構(gòu)的建立,當(dāng)然不能適應(yīng)高考選拔性考試的要求。例如在立體幾何的入門中,一提到兩直線垂直,馬上就意識到兩直線相交。4數(shù)學(xué)思想方法缺乏,學(xué)習(xí)目標(biāo)確定不當(dāng),思維惰性造成思維模糊。由于學(xué)習(xí)方法的缺乏而嚴(yán)重制約學(xué)生的有效思維的狀況普遍存在。我校在開學(xué)初開設(shè)的“學(xué)法講座”深受學(xué)生歡迎。針對學(xué)生存在的情況我作

7、了以下幾個方面的學(xué)生的問卷調(diào)查:學(xué)生對于自己“在初中階段數(shù)學(xué)學(xué)習(xí)的要求”選擇“名列前茅”的占79.18%,選擇“中等水平”的占17.45%。而對自己在高中階段選擇“名列前茅”的占45.46%,選擇“中等水平”的占47.05%。許多學(xué)生考上高中后,便想喘口氣,放松一下學(xué)習(xí)節(jié)奏。在高一學(xué)生中,回答“你對學(xué)習(xí)的感覺”時,感到困難的占52%,一部分學(xué)生選擇了降低要求的方法,認(rèn)為自己目前的數(shù)學(xué)學(xué)習(xí)狀態(tài)“良好”的僅占24.06%,認(rèn)為“一般”的占57.44%,認(rèn)為“較差”的占18.5%。學(xué)習(xí)要求的降低,影響了學(xué)習(xí)效果,使得數(shù)學(xué)思維發(fā)展的速度無法加快。 在“遇到難題的處理方式”的調(diào)查中,選擇“等老師講解”的

8、占12%,選擇“問同學(xué)或問老師”的占52%,選擇“繼續(xù)思考”的只有16%,選擇“等以后再解決”的占20%。思維指向模糊主要表現(xiàn)在對關(guān)鍵信息感知把握不準(zhǔn),思維指向性模糊,出思維的惰性。觀察只停滯在感知表象中,即使撞上關(guān)鍵信息,也不能加工形成有價值的反饋信息,致使思路受阻,從而懶于動腦,久而久之,養(yǎng)成了思維的惰性。這是學(xué)生思維障礙的最普遍原因。在對“解題時出現(xiàn)錯誤的原因”的調(diào)查中有30%的同學(xué)在回答選擇了“審題不清”這一項。學(xué)生在解數(shù)學(xué)題時,常尚未看清題意,見術(shù)語,便羅列公式,生搬硬套;見數(shù)據(jù),便代入演算,拼湊解答等。 由于思維的單一性,呈線性狀態(tài),導(dǎo)致思維過程常常中斷而受阻,這樣的學(xué)生大量存在5

9、各學(xué)段的銜接不當(dāng),主要表現(xiàn)在三個方面:節(jié)奏變化。就一節(jié)課的知識容量而言,初中遠(yuǎn)比不上高中,因而在講解中就有快慢和粗細(xì)之分。這一快一慢,一粗一細(xì)兩對矛盾就很容易將初中與高中阻隔,產(chǎn)生兩極分化,使初高中難以得到系統(tǒng)的響應(yīng),從而影響學(xué)生數(shù)學(xué)思維的發(fā)展。高一開學(xué)后一月所做的調(diào)查顯示:高中數(shù)學(xué)學(xué)習(xí)節(jié)奏比初中快的占82.17%,而覺得慢的同學(xué)僅占5.5%。教學(xué)方法的差異。有48.07%的學(xué)生認(rèn)為初中數(shù)學(xué)課大部分由老師講解,小部分由學(xué)生練習(xí),認(rèn)為初中重視學(xué)生討論與自學(xué)的僅占9.2%。這表明初中學(xué)生討論與自學(xué)的這一學(xué)習(xí)方法并沒有得到充分的培養(yǎng),沒有發(fā)揮學(xué)生的主觀能動性。在高中,認(rèn)為上課大部分由老師講解的降低到

10、27.34%,認(rèn)為討論與練習(xí)相當(dāng)?shù)膭t升至37.84%。教材因素導(dǎo)致初高中數(shù)學(xué)知識點(diǎn)脫節(jié)。不少學(xué)生認(rèn)為“對所需的初中知識感到略能運(yùn)用,但還有些困難”,而感到需要補(bǔ)充初中知識點(diǎn)的占20.53%,對所需初中知識能運(yùn)用自如的不到30%。 6評價機(jī)制本身的不完善或評價機(jī)制貫徹的不完全。 主要表現(xiàn)在三個方面:不考的不學(xué)。數(shù)學(xué)教師對教材中“不考,可以省略”的態(tài)度中,偶爾說的占很大比例。評價方式單一。無論對老師還是學(xué)生,往往都是以學(xué)科考試成績作為主要指標(biāo)進(jìn)行評價??荚噷?dǎo)向的偏差。我認(rèn)為用考試的方法進(jìn)行評價本身并沒錯,問題是考試(命題)本身的導(dǎo)向是否正確。 由此可見,高中生數(shù)學(xué)思維的障礙不僅嚴(yán)重阻礙了學(xué)生的認(rèn)知

11、結(jié)構(gòu)的更新和發(fā)展,更重要的是阻礙了學(xué)生解題能力的提高。因此在平時的教學(xué)中作為教的一方,教師應(yīng)該適時引導(dǎo),幫助學(xué)生突破數(shù)學(xué)的思維障礙,培養(yǎng)正確的思維方法和方式,以促使學(xué)生正確的符合時代要求的認(rèn)知結(jié)構(gòu)。(三)數(shù)學(xué)思維障礙的解決方法:1做好初高中的銜接教學(xué),在進(jìn)入高中的初期應(yīng)著重扭轉(zhuǎn)初中的教學(xué)中學(xué)生的機(jī)械模仿思維,要教會學(xué)生如何思考問題。尤其在新知識的教學(xué)中應(yīng)嚴(yán)格遵循學(xué)生的認(rèn)知特點(diǎn),照顧到學(xué)生的個性特點(diǎn),在課堂教學(xué)中要強(qiáng)調(diào)教師的主導(dǎo)地位、充分發(fā)揮學(xué)生的主體意識,培養(yǎng)學(xué)生良好的思維品質(zhì),剛進(jìn)入高中的學(xué)生可塑性很強(qiáng),如果教師能因材施教,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,可以最大限度地防止數(shù)學(xué)思維障礙的產(chǎn)生。當(dāng)然高

12、中數(shù)學(xué)內(nèi)容的廣度、深度非初中數(shù)學(xué)可比,如能給學(xué)生一點(diǎn)發(fā)展的空間,適時地發(fā)現(xiàn)學(xué)生在數(shù)學(xué)學(xué)習(xí)中的閃光點(diǎn)并給以適當(dāng)?shù)墓膭睢椭麄兇_立學(xué)習(xí)的目標(biāo),使他們有“跳一跳就能夠得著”的感覺。例如函數(shù)作為高中數(shù)學(xué)內(nèi)容中最抽象的部分貫穿始終,學(xué)生僅靠課堂是遠(yuǎn)遠(yuǎn)不夠的,所以在平時的教學(xué)中注重課后的輔導(dǎo),適時地讓知識“沉淀”一下,隨著教學(xué)的深入,學(xué)生對函數(shù)的理解將會有不同的感受。2創(chuàng)造性思維品質(zhì)的培養(yǎng),教會學(xué)生思維的方法。首先應(yīng)當(dāng)使學(xué)生融會貫通地學(xué)習(xí)知識,養(yǎng)成獨(dú)立思考的習(xí)慣。在獨(dú)立思考的基礎(chǔ)上,還要啟發(fā)學(xué)生積極思考,使學(xué)生多思善問。能夠提出高質(zhì)量的問題是創(chuàng)新的開始。數(shù)學(xué)教學(xué)中應(yīng)當(dāng)鼓勵學(xué)生提出不同看法,并引導(dǎo)學(xué)生積極

13、思考和自我鑒別。新的課程標(biāo)準(zhǔn)和教材為我們培養(yǎng)學(xué)生的創(chuàng)造性思維開辟了廣闊的空間。 批判性思維品質(zhì)的培養(yǎng),應(yīng)該把重點(diǎn)放在引導(dǎo)學(xué)生檢查和調(diào)節(jié)自己的思維活動過程上。要引導(dǎo)學(xué)生剖析自己發(fā)現(xiàn)和解決問題的過程;學(xué)習(xí)中運(yùn)用了哪些基本的思考方法、技能和技巧,它們的合理性如何,效果如何,有沒有更好的方法;學(xué)習(xí)中走過哪些彎路,犯過哪些錯誤,原因何在。 現(xiàn)代教育觀點(diǎn)認(rèn)為,數(shù)學(xué)教學(xué)是數(shù)學(xué)活動的教學(xué),即思維活動的教學(xué)。如何在數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的思維能力,養(yǎng)成良好思維品質(zhì)是教學(xué)改革的一個重要課題。孔子說:“學(xué)而不思則罔,思而不學(xué)則殆”。在數(shù)學(xué)學(xué)習(xí)中要使學(xué)生思維活躍,就要教會學(xué)生分析問題的基本方法,這樣有利于培養(yǎng)學(xué)生的正確思

14、維方式。要學(xué)生善于思維,必須重視基礎(chǔ)知識和基本技能的學(xué)習(xí),沒有扎實的雙基,思維能力是得不到提高的。 數(shù)學(xué)概念、定理是推理論證和運(yùn)算的基礎(chǔ)。在教學(xué)過程中要提高學(xué)生觀察分析、由表及里、由此及彼的認(rèn)識能力;在例題課中要把解(證)題思路的發(fā)現(xiàn)過程作為重要的教學(xué)環(huán)節(jié),僅要學(xué)生知道該怎樣做,還要讓學(xué)生知道為什么要這樣做,是什么促使你這樣做,這樣想的;在數(shù)學(xué)練習(xí)中,要認(rèn)真審題,細(xì)致觀察,對解題起關(guān)鍵作用的隱含條件要有挖掘的能力,會運(yùn)用綜合法和分析法,并在解(證)題過程中盡量要學(xué)會用數(shù)學(xué)語言、數(shù)學(xué)符號進(jìn)行表達(dá)。 此外,還應(yīng)加強(qiáng)分析、綜合、類比等方法的訓(xùn)練,提高學(xué)生的邏輯思維能力;加強(qiáng)逆向應(yīng)用公式和逆向思考的訓(xùn)

15、練,提高逆向思維能力;通過解題錯、漏的剖析,提高辨識思維能力;通過一題多解(證)的訓(xùn)練,提高發(fā)散思維能力等。3開展問題教學(xué):問題是數(shù)學(xué)的心臟,數(shù)學(xué)問題是數(shù)學(xué)思維的動力,并為思維指出了方向;數(shù)學(xué)思維的過程也就是不斷地提出問題和解決問題的過程。課堂教學(xué)是實施素質(zhì)教育的主渠道,而把素質(zhì)教育落實到課堂教學(xué)中,恰恰是以問題解決作為中介的。因此,在數(shù)學(xué)課堂學(xué)習(xí)中,教師要不斷向?qū)W生提出不同層次的數(shù)學(xué)問題,為更深入的數(shù)學(xué)思維活動提供動力和規(guī)劃方向,使數(shù)學(xué)思維活動持續(xù)不斷地向前發(fā)展。 例:已知直線與點(diǎn),在直線上求一點(diǎn)使得直線,直線及軸在第一象限內(nèi)圍成的三角形面積最?。磕贸鰡栴}并給學(xué)生一定時間的思考后提問學(xué)生解決

16、的方案,中等程度的學(xué)生仍舊回答不出。我在此時提出這樣的兩個問題讓學(xué)生思考:解決最值問題的基本方法是什么?(建立目標(biāo)函數(shù)和數(shù)形結(jié)合) 在本題中影響三角形面積的因素是什么?(直線的位置或直線上點(diǎn)的位置。)這樣一來就可設(shè)點(diǎn)或直線,設(shè)三角形面積為,接下去的問題就是建立一個關(guān)于或的目標(biāo)函數(shù),這是一個數(shù)學(xué)建模的過程。這樣學(xué)生在數(shù)學(xué)思維上的障礙在教師的問題引導(dǎo)下就實現(xiàn)了突破,而且以后遇到類似的問題時也會按照這樣的思維途徑去尋找問題解決的方案。 4誘導(dǎo)學(xué)生暴露思維過程,提倡教學(xué)反思。誘導(dǎo)學(xué)生暴露思維過程能讓教師明白學(xué)生思維的問題所在,如果能在教師的指導(dǎo)下自覺地對自身的思維活動進(jìn)行反思、調(diào)整。教師應(yīng)該可以把重點(diǎn)放在引導(dǎo)學(xué)生檢查和調(diào)節(jié)自己的思維活動過程上。要引導(dǎo)學(xué)生剖析自己發(fā)現(xiàn)和解決問題的過程;學(xué)習(xí)中運(yùn)用了哪些基本的思考方法、技能和技巧,它們的合理性如何,效果如何,有沒有更好的方法;學(xué)習(xí)中走過哪些彎路,犯過哪些錯誤,原因何在。批判性思維的培養(yǎng),有賴于教師根據(jù)學(xué)生的具體情況,有針對性地設(shè)計反思問題,以引起學(xué)生的進(jìn)一步思考。通過反思可以促使學(xué)生提煉數(shù)學(xué)思維方法,改進(jìn)數(shù)學(xué)思維的習(xí)慣,促使新的認(rèn)知結(jié)構(gòu)的重組和完善。 例:已知點(diǎn)分別是圓和橢圓上的動點(diǎn)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論