版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、第二章1推導(dǎo)范德華方程中的a,b和臨界壓縮因子Zc及并將其化為對比態(tài)方程范德華方程:根據(jù)物質(zhì)處于臨界狀態(tài)時:即其一階,二階導(dǎo)數(shù)均為零將范德華方程分別代入上式得: (1) (2)由(1),(2)式得Vmc=3b (3)將(3)代入(1)得 (4)將(3),(4)代入范德華方程的 (5)則臨界參數(shù)與范德華常數(shù)a,b關(guān)系為式(3),(4),(5)由以上關(guān)系式可得 b= ZC= 代入可推出 (6)將(3),(4),(5)代入(6)的即2-1使用下述三種方法計(jì)算1kmol的甲烷貯存在體積為0.1246m3、溫度為50的容器中所產(chǎn)生的壓力:(1)理想氣體方程;(2)Redlich-Kwong方程;(3)普
2、遍化關(guān)系式。解:查附錄表可知:,(1)理想氣體狀態(tài)方程:(2)RK方程:(3) 遍化關(guān)系式法 應(yīng)該用鋪片化壓縮因子法Pr未知,需采用迭代法。令得:查表28(b)和27(b)得:,Z值和假設(shè)值一致,故為計(jì)算真值。2-2 解:理想氣體方程誤差:關(guān)系法 從附錄二中差得正丁烷的臨界參數(shù)為因此 根據(jù)和值,查附錄3表A1和表A2得Z0=0.8648和Z1=0.03761將此值代入求得誤差:2-4將壓力為2.03MPa、溫度為477K條件下的2.83m3NH3氣體壓縮到0.142m3,若壓縮后溫度448.6K,則壓力為若干?分別用下述方法計(jì)算:解:查表得:Tc=403.6K,Pc=11.28×10
3、6Pa,Vc=72.5cm3/mol(1)PR方程:K=0.3746+1.54226××0.2502=0.7433a=0.4049 b=2.3258×10-5A=0.05226 B=0.0119h=B/2=0.00119/Z迭代計(jì)算Z=0.9572V=ZRT/T=1.8699×10-3m3/moln=V0/V=1513mol壓縮后V=V0/n=0.142/1513=9.385×10-5m3/mol壓縮后壓力(2)普遍化關(guān)系式。普遍化方程:(1)(2)(3)將Tr1=代入(2),(3)得B01=-0.242 B11=0.05195代入(1)得B1
4、=6.8×10-5代入B1得Vm1=1.885×10-3m3n=1501.326mol 因?yàn)槲镔|(zhì)的量不變所以Vm2=9.51×10-5m3mol同理得B2=8.1×10-5P2=Pa2-6試計(jì)算含有30%(摩爾分?jǐn)?shù))氮?dú)猓?)和70%(摩爾分?jǐn)?shù))正丁烷(2)的氣體混合物7g,在188和6.888MPa條件下的體積。已知B11=14cm3/mol,B22=265cm3/mol,B12=9.5cm3/mol。解:由題可知且m1=1.2g,m2=5.8g由于組分為二元混合物,所以帶入已知條件得,且混合體積2-7解: 由得 所以 =又排放管線流速不超過,以排放。
5、=2-8解:RK方程由附錄2查得氮的臨界參數(shù)為=按公式(2-22) 和公式(2-25)兩式迭代計(jì)算SRK方程=按公式(2-22) 和公式(2-25)兩式迭代計(jì)算2-9 解:由附錄二查得: 由圖(2-8)知,使用普遍化關(guān)系式計(jì)算,查附錄三得:由2-10解: 由附錄二查得: 根據(jù) 值查圖2-9得,查圖2-10()得D=-5.5,代入式(2-86),得第三章3-1物質(zhì)的體積膨脹系數(shù)和等溫壓縮系數(shù)k的定義分別為,試導(dǎo)出服從范德華狀態(tài)方程的和k的表達(dá)式。解:由范德華方程: 微分得根據(jù)循環(huán)關(guān)系式得對于定義式3-2某理想氣體借活塞之助裝于鋼瓶中,壓力為34.45MPa,溫度為93,反抗一恒定的外壓為3.45
6、MPa而等溫膨脹,直到二倍于初始容積為止,試計(jì)算過程之U, H, S, A, G, TdS, PdV,Q,W。解:對于理想氣體的等溫恒外壓膨脹,,則:3-5 解:需要計(jì)算該條件下二氧化碳的焓和熵已知二氧化碳的臨界參數(shù)為: 查附錄三圖得:由式(3-59)得:=由式(3-60)得:所以,所以,3-10解:設(shè)有液體,則有蒸汽 查飽和水蒸氣表,在1MPa下飽和蒸汽和液體的密度分別為 則體積分別為: 依照題意:求解得:,即有飽和液體查飽和水蒸氣表得到:在1MPa下,蒸汽和液體的焓值分別為:則總焓值為:3-13試采用RK方程求算在227,5MPa下氣相正丁烷的剩余焓和剩余熵。解:正丁烷的臨界參數(shù)為.,由取
7、初始值Z=1,進(jìn)行迭代計(jì)算,得Z=0.6858,即,即3-14假設(shè)二氧化碳服從PK狀態(tài)方程,試計(jì)算50,10.13MPa時二氧化碳的逸度。解:二氧化碳的臨界參數(shù)為:,由題意知,由,取初始值Z=1,進(jìn)行迭代計(jì)算,得Z=0.414,即f=6.344MPa第四章4-1 在20,0.1013MPa時,乙醇(1)與H2O(2)所形成的溶液其體積:V=58.3632.46242.98+58.7723.45試將乙醇和水的偏摩爾體積,表示為濃度2的函數(shù)解: =V2()=V1()=V+(12) () =32.4685.962+176.3193.80將代入得=58.36+42.98117.54+70.35將代入得
8、=25.9085.862+219.29211.34+70.354-2某二元液體混合物在固定T及P的焓可用下式表達(dá)H=4001+6002+12(401+202)H單位J·mol-1,確定在該溫度壓力狀態(tài)下:(1)用1表示的和(2)純組分焓H1和H2的數(shù)值(3)無限稀釋下液體的偏摩爾焓和解:H=4001+6002+12(401+202)將2=11代入上式得H=620180120()T,P, 1=18060=H+(11)=H1將式代入和得=42060+40=600+40(2)將1=1代入式得H1=400 J·mol-1將1=0代入式得H2=600 J·mol-1(3)將
9、1=0代入式得=420 J·mol-1將1=1代入式得=640 J·mol-14-5 試計(jì)算甲乙酮(1)和甲苯(2)的等分子混合物在323K和2.5×104Pa下的、和f。解:設(shè)氣體和混合物服從截尾到第二維里系數(shù)的維里反復(fù)成。查表得各物質(zhì)的臨界參數(shù)和偏心因子的數(shù)值見下表,設(shè)式(2-61)中的二元交互作用參數(shù)kij=0。ijTcijkPcijMPaVcij(cm3mol)Zcijcij112212535.6591.7563.0 4.15 4.11 4.132673162910.2490.2640.2560.3290.2570.293從上表所查出的純物質(zhì)參數(shù)的數(shù)值,用
10、式(2-61)式(2-65)計(jì)算混合物的參數(shù),計(jì)算結(jié)果列入表的最后一行。將表中的數(shù)據(jù)代入式(2-25a) 、(2-25b)和(2-60),計(jì)算得到B0,B1和Bij的數(shù)值如下:ijTrijB0B1Bij(cm3mol)1122120.6030.5460.574 0.8651.028 0.9431.3002.0451.632138718601611=2B12B11B22=2×(1611)+1387+1860=25 cm3mol=( B11+)=(1387)+(0.5)2(25)=0.0129=0.987=( B22+)=(1860)+(0.5)2(25) =0.0173=0.983=0
11、.0151=0.985逸度f=P·=2.463×104Pa4-6解: 改寫為對求導(dǎo)代入組分的逸度計(jì)算公式積分因?yàn)橛?所以即4-9解:先求混合物的摩爾體積,氫 丙烷由附錄二查得:氫和丙烷的臨界參數(shù)值,將其代入式(2-61)(2-65)以及式(2-7a)和(2-7b),得出如下結(jié)果:1130.8761.2050.065-0.220.3050.01850.129922343.9143.9580.2030.1520.2810.062716.31512103.0472.0710.1212-0.0340.2930.03581.538由式(2-66)和式(2-67)求出 其中即 聯(lián)立兩式
12、得所以摩爾體積為4-10 某二元液體混合物在固定T,P下其超額焓:HE=12(401+202)HE單位J·mol-1,求,解:把2=1-1代入HE=12(401+202)得HE=20120二元體系溶液性質(zhì)與組分摩爾性質(zhì)關(guān)系:=M+2()=M1()將M=HE代入式和得=2060+40=404-13解:如果該模型合理,則應(yīng)滿足G-D方程所以a,b方程滿足方程。若用c d 方程如果該模型合理,則應(yīng)滿足G-D方程所以c,d方程不滿足方程。第五章5-1 請判別下列敘述的是非(1)某二元體系(不形成恒沸混合物),在給定的溫度和壓力下,達(dá)到氣液平衡時,則此平衡體系的汽相混合物的總逸度與液相混合物的
13、總逸度是相等的。錯。分逸度相等。(2)由組分A、B組成的二元體系處于汽液平衡,當(dāng)體系T、p不變時,如果再加入一定量的組分A,則汽、液平衡相的組成也不會變化。錯。將會形成新的汽液平衡,平衡組成相應(yīng)改變。(3)形成恒沸混合物的二元汽液平衡,在恒沸點(diǎn),其自由度為1,等壓下T-x1-y1表示的相圖中,此點(diǎn)處于泡點(diǎn)線與露點(diǎn)線相切。錯。泡點(diǎn)線與露點(diǎn)線相交。(4)某溶液的總組成為zi,對氣相為理想氣體,液相為理想溶液體系的泡點(diǎn)壓力pb的表達(dá)式為(為i組分的飽和蒸汽壓)。錯。(5)混合物的總組成為zi,遵守Raoult定律體系的露點(diǎn)壓力pd的表達(dá)式(為i組分的飽和蒸汽壓)。錯。表達(dá)式應(yīng)為(6)汽液平衡中,汽液
14、平衡的比Ki=yixi,所以Ki僅與組成有關(guān)。錯。K與溫度壓力有關(guān)。(7)形成恒沸物的汽液平衡,在恒沸點(diǎn)時,所有組分的相對揮發(fā)度ij=1.正確。(8)將兩種純液體在給定的溫度、壓力下,混合形成溶液,那么混合自由焓G一定小于零。錯。G可能為0。5-2丙酮(1)-甲醇(2)二元溶液的超額自由焓表達(dá)式,純物質(zhì)的Antoine方程 單位kPa T單位試求:(1)假如氣相可視為理想氣體,B=0.75,溫度為60下的p-x1-y1數(shù)據(jù);(2)氣相可視為理想氣體,B=0.64,壓力為75kPa下的T-x1-y1數(shù)據(jù)。解:(1) B=0.75,T=60=4.751 =115.685kPa=4.437 =84.
15、490kPa=n(0.75x1x2)=由于氣體為理想氣體,液相非理想溶液,氣液平衡關(guān)系:pyi=+(3)(4)令帶入(1)(2)得則p=84.490kPa,y1=0同理得10.10.30.5 0.7 0.80.9 y10.21710.44210.57790.70280.77780.8711PkPa97.81113.33120.76123.16128.63120.35(2) 當(dāng)B=0.64 P=75kPa(3)(4) (5)以為例,代入(1),(2)可得設(shè)T=57,代入(3),(4)得=104.5949kPa =74.7189kPa 代入(5)可得 y1=0 y2=0.9963再設(shè)設(shè)T=57.0
16、9,代入(3),(4)得=104.915kPa =74.9976kPa代入(5)可得y1=0 y2=0.99997 同理得10.10.30.50.70.80.9y10.2100.4510.6000.6660.8050890T53.8150.0548.1247.15 46.9847.065-3解:汽相視為理想氣體,B=0.75,溫度為60得得汽相視為理想氣體,液相為非理想溶液,汽液平衡關(guān)系式:x0.10.30.50.70.80.9Y0.21710.44210.57790.70280.77730.8711p/kpa97.81113.33120.76123.16122.63120.35(2)已知p=
17、75KPa,當(dāng)時,同理:設(shè)溫度為53.81(此溫度從那來),由Antoine方程知:,假設(shè)成立同理可得下表:t53.8150.0548.1247.1546.9847.06x10.10.30.50.70.80.9y10.20990.44940.59740.73160.80470.89065-4解:B=0.106先求B值,代入表中數(shù)據(jù)得同理算得其他的,5-6解: 得 得汽液平衡關(guān)系式當(dāng)將 代入得: 因,可近似看作常數(shù),利用和已知,給定值,代入Wilson方程求得,。利用上述方程試差求解,值。5-13解:PR方程其中組分逸度系數(shù)的計(jì)算其中 ,氣液平衡關(guān)系式5-13采用PR方程計(jì)算甲烷(1)二甲氧基甲
18、烷(2)體系在313.4K、x1=0.315時泡點(diǎn)壓力與汽相組成。查得組分的臨界參數(shù)如下: 組分 TcK pcMP 甲烷 190.6 4.60 0.008二甲氧基甲烷 480.6 3.95 0.286PR方程的二元相互作用參數(shù)kij=0.0981解:(1)列出所需要的計(jì)算公式PR方程(1)其中ai(T)=a(Tc)(Tr,)(2) (3) (4)(5)(6)組分逸度系數(shù)計(jì)算(7)其中 (8) (9)(10)(11)泡點(diǎn)汽液平衡關(guān)系式(12)(2)由已知條件得=1.6443 =0.6521代入式(2)(6)得a1(T)=0.1980 a2(T)=2.4558設(shè)p1=60kPa代入上式,試差法得V
19、L=43.4268,設(shè)由式(8)-(11)得a12=0.6289 A=1.2756×105 B=1.4357×106 Z=1 =2.3735將以上數(shù)據(jù)代入(7)=0.999965把y1=0.315由于y1=x1=0.315 所以得 由PR方程求在p=60kPa下Vv=43.4268所以A=1.2756×105 B=1.4357×106 Z=1 代入式(7)得=0.999965所以設(shè)p2=60kPa代入上式,試差法得VL=43.4268,設(shè)由式(8)-(11)得 A=1.2756×105 B=1.4357×106 Z=1 將以上數(shù)據(jù)代入
20、(7)=0.999976把y2=0.685代入式(8)-(10)得 由PR方程求在p=60kPa下Vv=43.4268所以A=1.2756×105 B=1.4357×106 Z=1 代入式(7)得=0.999976 y1=0.315 P=60kPa5-14解:已知壓力,溫度,摩爾分?jǐn)?shù),由P-K-T系列圖查得Ki,再由5-17解:兩個公式在熱力學(xué)上若正確,須滿足恒T P的G-D方程,即所以這兩個公式在熱力學(xué)上不正確。5-21解:(1)在圖中為A點(diǎn)。(純?nèi)芤旱狞c(diǎn),即點(diǎn))(2)曲線代表更穩(wěn)定的狀態(tài),(因?yàn)樽杂伸市?(3)(4)負(fù)值(因二元混合后,自由焓下降。)第六章6-1一個容量
21、為60m3的槽內(nèi)裝有5MPa、400的蒸氣,使蒸氣經(jīng)由一閥從槽中釋放至大氣,直到壓力降至4MPa,若此釋放過程為絕熱,試求蒸氣在槽中的最終溫度及排出蒸氣的質(zhì)量。解:由T1=400,P1=5MPa,查表得S1=6.5736 kJ(kg·K)過程可視為等熵過程,所以S2= S1,又已知P2=4MPa查表可得T2=366.5查表得Tc=647.3K, Pc=22.05mPa,=0.344由PR方程可求得摩爾體積VPR方程: =0.606806PR方程: h= A1=0.092593 A2=0.085823 B1=0.016975 B2=0.014291帶入上式可得 =h1=取Z1=1經(jīng)迭代
22、得Z1=0.92185同理得Z2=0.529729kg6-2解:6-8解:氮?dú)庠诜橇鲃舆^程中的理想功,按式代入已知條件進(jìn)行計(jì)算值不知道,但所以 設(shè)氮?dú)庠诩盃顟B(tài)下可應(yīng)用理想氣體狀態(tài)方程,則得 氮?dú)庠诜€(wěn)定流動過程中的理想功,按式代入有關(guān)數(shù)據(jù)進(jìn)行計(jì)算6-9 用壓力為1.570×106Pa、溫度為757K的過熱蒸汽驅(qū)動透平機(jī),乏汽壓力為6.868×104Pa。透平機(jī)膨脹既不絕熱也不可逆。已知實(shí)際功相當(dāng)于等熵功的80%。每1kg蒸汽通過透平機(jī)的散熱損失為7.50kJ。環(huán)境溫度為293K。求此過程的理想功、損失功及熱力學(xué)效率。解:由水蒸氣熱力學(xué)性質(zhì)圖表查出,當(dāng)p1=1.570×
23、;106Pa、T1=757K時H1=3428kJ·kg1 S1=7.488kJ·kg1·K設(shè)蒸汽在透平機(jī)中的膨脹是可逆絕熱,則S2= S1=7.488kJ·kg1·K,當(dāng)p2=6.868×104Pa,S2= 7.488kJ·kg1·K1時,查表得=2659kJ·kg1由此絕熱可逆功=H1=769 kJ·kg1,透平機(jī)實(shí)際輸出軸功為=80%=615.2 kJ·kg1根據(jù)穩(wěn)流體系熱力學(xué)第一定律H=Q+得H2=H1+ Q+=2805.3 kJ·kg1因此蒸汽的實(shí)際終態(tài)為:p2=6.
24、868×104PaH2=2805.3 kJ·kg1 S2= 7.488kJ·kg1·K1從蒸汽表查得此過程的理想功Wid=HT0S=727 kJ·kg1損失功為為實(shí)際功與理想功之差WL=WacWid=111.8 kJ·kg1熱力學(xué)效率=1=0.84626-12解:6-14有一逆流式換熱器,利用廢氣加熱空氣。空氣由105Pa、293K被加熱到398K,空氣的流量為1.5kgs;而廢氣從1.3×105Pa、523K冷卻到368K。空氣的等壓熱容為1.04kJ(kg·K),廢氣的等壓熱容為0.84 kJ(kg·
25、K)。假定空氣與廢氣通過換熱器的壓力與動能變化可忽略不計(jì),而且換熱器與環(huán)境無熱量交換,環(huán)境狀態(tài)為105Pa和93K。試求:(1)換熱器中不可逆?zhèn)鳠岬膿p失(2)換熱器的效率。1由換熱器的能量平衡求出廢氣的質(zhì)量流量mg2列出換熱器的平衡,求得換熱器的損失??諝狻U氣在換熱器內(nèi)流動可看做穩(wěn)定流動,則=31.15kJs3換熱器的效率從上述計(jì)算可知,空氣所得到的為23.79 kJs,廢氣所耗費(fèi)的為54.95 kJs,故目的效率第七章7-1 請判別下列各題敘述的是非(1)蒸汽動力循環(huán)中,汽輪機(jī)入口蒸汽參數(shù)為p1=3MPa,t1=620,經(jīng)絕熱不可逆膨脹到0.1MPa,此時焓值為2831.8kJ,經(jīng)計(jì)算后求
26、得該汽輪機(jī)的等熵效率為0.92.正確。=,由P1,t1查表得H1=2761.3,S1,根據(jù)P2,S2=S1,查得H2=2761.3已知,代入上式得=0.9175.(2)分級抽汽回?zé)嵫h(huán)的熱效率高于Rankine循環(huán),而汽耗率小于Rankine循環(huán)。錯。汽耗率大于Rankine循環(huán)。(3)絕熱節(jié)流的溫度效應(yīng)可用Joule-Thomson系數(shù)來表征。實(shí)際氣體節(jié)流后,溫度可能升高、降低或不變。對。(4)理想氣體經(jīng)節(jié)流膨脹后,一般溫度會下降。錯。溫度不變。(5)實(shí)際氣體經(jīng)節(jié)流膨脹后,其終態(tài)與初態(tài)的參數(shù)值變化是。錯。(6)逆Carnot循環(huán)中,冷凝器的排熱溫度與蒸發(fā)器的吸熱溫度差越大,則此制冷循環(huán)的制冷
27、系數(shù)越小。對。(7)某制冷劑在指定的溫度下。若壓力低于該溫度下的飽和壓力,則此制冷劑所處狀態(tài)為過熱蒸汽。錯。(8)在相同的操作條件下,熱泵的供熱系數(shù)比蒸汽壓縮制冷裝置的制冷系數(shù)大。對。7-2(1)試求20×105Pa的飽和蒸汽膨脹到終壓為0.5×105Pa的Rankine循環(huán)熱效率,并與相同溫度范圍內(nèi)工作的Carnot循環(huán)的熱效率相比較。(2)在相同的溫度范圍內(nèi),carnot循環(huán)的熱效率最高,為什么蒸汽動力循環(huán)不采用carnot循環(huán)?解:(1)點(diǎn)的選取與Rankine循環(huán)示意圖相同1點(diǎn)飽和蒸汽p1=20×105Pa 查表得T1=212.4 H1=2799.5kJk
28、g S1=6.340kJ(kg·K)2點(diǎn)濕蒸汽p2=0.5×105Pa S2=S1=6.340kJ(kg·K)查得 Hg=2645.9kJkg HL=340.49kJkg Sg=7.5939kJ(kg·K) SL=1.0910(kg·K) VL=1.0300cm3g設(shè)2點(diǎn)處濕蒸汽的干度為xSgx+(1x)SL= S1 解得x=0.807H2 =Hgx+(1x)HL= 2200.9559 kJkg3點(diǎn)飽和液體p3=0.5×105Pa H3=HL=340.49kJkg 4點(diǎn)未飽和水H3=H3+ Wp= H3+ VL(P4P3)=340.4
29、9+0.00103×(20-0.5) ×105×10-3=342.4985 kJkg=0.2428Carnot循環(huán)的熱效率=0.2699(2) 與郎肯循環(huán)相同溫限的卡諾循環(huán),吸熱過程將在氣態(tài)下進(jìn)行,事實(shí)證明氣態(tài)物質(zhì)實(shí)現(xiàn)定溫過程是十分困難的,所以過熱蒸汽卡諾循環(huán)至今沒有被采用。那么,能否利用飽和區(qū)(氣液兩相區(qū))定溫定壓的特性形成飽和區(qū)的卡諾循環(huán),從原理上看是可能的,但是實(shí)施起來,有兩個關(guān)鍵問題,一是,汽輪機(jī)出口位于飽和區(qū)干度不高處,濕度太大使得高速運(yùn)轉(zhuǎn)的汽輪機(jī)不能安全運(yùn)行,同時不可逆損失增大,其二,這樣的卡諾循環(huán),壓縮過程將在濕蒸汽區(qū)進(jìn)行,對于泵會產(chǎn)生氣縛現(xiàn)象,氣液
30、混和工質(zhì)的壓縮會給泵的設(shè)計(jì)和制造帶來難以克服的困難,因此迄今蒸汽動力循環(huán)未采用卡諾循環(huán)。7-3解:查水蒸氣表得:壓力為,(1點(diǎn))(2點(diǎn)濕蒸汽)壓力為 設(shè)2點(diǎn)濕蒸汽的干度x汽輪機(jī)出口乏汽的混合焓汽輪機(jī)做功水泵消耗的壓縮功飽和蒸汽鍋爐提供的熱量該循環(huán)所做的凈功該循環(huán)的汽耗率SSC循環(huán)的熱效率7-7解:判斷節(jié)流膨脹的溫度變化,依據(jù)Joule-Thomson效應(yīng)系數(shù)J。 由熱力學(xué)基本關(guān)系式可得到: 將P-V-T關(guān)系式代入上式,其中可見,節(jié)流膨脹后,溫度比開始為高。7-14解:查空氣的圖由, , 得:理想操作理論液化率每千克空氣液化所消耗的功(2)實(shí)際操作空氣的等壓比熱為 不完全熱交換損失為實(shí)際操作時液
31、化率解得每千克空氣液化所消耗的功10-1 對于下述氣相反應(yīng)2H2S(g)+3O2(g)2H2O(g)+2SO2(g)設(shè)各物質(zhì)的初始含量H2S為2mol,O2為4mol,而H2O和SO2的初始含量為零,試導(dǎo)出各物質(zhì)的量ni和摩爾分?jǐn)?shù)yi對反應(yīng)度的函數(shù)表達(dá)式。解:對于所給的反應(yīng),式=···=d可以寫成= d對四個與ni的方程式進(jìn)行積分,的積分限由初態(tài)的零積分到狀態(tài)的,的下述四個積分式:=2 =3 =2 =2由這些積分式可得:n H2S= 22n O2= 43n H2O = 2n SO2= 2= 6所以:10-2設(shè)一體系,下述兩個反應(yīng)同時發(fā)生:C2H4(g)+O2(g)C2H4O(g)(1)C2H4(g)+3O2(g)2CO2+2H2O(g)(2)如果各物質(zhì)的初始含量為5mol C2H4和2mol O2,而C2H4O、CO2和H2O的初始含量為零,試用反應(yīng)度1和2來表示反應(yīng)中各物質(zhì)的摩爾分?jǐn)?shù)。
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 河北省雄安新區(qū)2026屆高三上學(xué)期1月期末考試歷史試卷(含答案)
- 安徽省蕪湖市無為市部分學(xué)校2025-2026年九年級上學(xué)期1月期末考試道德與法治試卷(含答案)
- 2025-2026學(xué)年天津市河北區(qū)九年級(上)期末物理試卷(含答案)
- 五年級下冊期末考試卷及答案
- 網(wǎng)易筆試題庫及答案
- 2022-2023年部編版八年級語文(上冊期末)練習(xí)及答案
- 成都風(fēng)俗習(xí)慣禮儀知識
- 烏馬河2022年事業(yè)編招聘考試模擬試題及答案解析19
- 2022~2023水利設(shè)施管養(yǎng)人員考試題庫及答案第627期
- 數(shù)理方程考試試卷及答案
- 授信財(cái)務(wù)知識培訓(xùn)課件
- 師范類學(xué)生教學(xué)能力提升計(jì)劃
- (2025)鐵路局招聘筆試真題及答案
- 2025年中國燕麥數(shù)據(jù)監(jiān)測報告
- 地理八上期末考試試卷及答案
- 騎車誤傷協(xié)議書
- 孔源性視網(wǎng)膜脫離護(hù)理查房
- 景區(qū)工作總結(jié)匯報
- 《中級財(cái)務(wù)會計(jì)》課件-11收入、費(fèi)用和利潤
- 新生兒肺炎的治療與護(hù)理
- 向客戶介紹公司質(zhì)量管理
評論
0/150
提交評論