2022屆福建省泉州市十高考數(shù)學五模試卷含解析_第1頁
2022屆福建省泉州市十高考數(shù)學五模試卷含解析_第2頁
2022屆福建省泉州市十高考數(shù)學五模試卷含解析_第3頁
2022屆福建省泉州市十高考數(shù)學五模試卷含解析_第4頁
2022屆福建省泉州市十高考數(shù)學五模試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022高考數(shù)學模擬試卷注意事項1考生要認真填寫考場號和座位序號。2試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B 鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1定義在R上的函數(shù)y=fx滿足fx2x-1,且y=fx+1為奇函數(shù),則y=fx的圖象可能是( )ABCD2已知是的共軛復數(shù),則( )ABCD3集合中含有的元素個數(shù)為( )A4B6C8D124已知集合,集合,則( )ABCD5已知l,m是兩

2、條不同的直線,m平面,則“”是“l(fā)m”的( )A充分而不必要條件B必要而不充分條件C充要條件D既不充分也不必要條件6已知,則p是q的( )A充分而不必要條件B必要而不充分條件C充分必要條件D既不充分也不必要條件7若,則的值為( )ABCD8已知雙曲線的一個焦點與拋物線的焦點重合,則雙曲線的離心率為( )ABC3D49如圖,在平行四邊形中,對角線與交于點,且,則( )ABCD10雙曲線的漸近線方程為( )ABCD112019年某校迎國慶70周年歌詠比賽中,甲乙兩個合唱隊每場比賽得分的莖葉圖如圖所示(以十位數(shù)字為莖,個位數(shù)字為葉).若甲隊得分的中位數(shù)是86,乙隊得分的平均數(shù)是88,則( )A170

3、B10C172D1212已知函數(shù),若對任意,都有成立,則實數(shù)的取值范圍是( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13某高中共有1800人,其中高一、高二、高三年級的人數(shù)依次成等差數(shù)列,現(xiàn)用分層抽樣的方法從中抽取60人,那么高二年級被抽取的人數(shù)為_14已知向量,且,則_15已知三棱錐的四個頂點都在球O的球面上,E,F(xiàn)分別為,的中點,則球O的體積為_.16三對父子去參加親子活動,坐在如圖所示的6個位置上,有且僅有一對父子是相鄰而坐的坐法有_種(比如:B與D、B與C是相鄰的,A與D、C與D是不相鄰的).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)

4、已知數(shù)列滿足,等差數(shù)列滿足,(1)分別求出,的通項公式;(2)設數(shù)列的前n項和為,數(shù)列的前n項和為證明:18(12分)近幾年一種新奇水果深受廣大消費者的喜愛,一位農(nóng)戶發(fā)揮聰明才智,把這種露天種植的新奇水果搬到了大棚里,收到了很好的經(jīng)濟效益根據(jù)資料顯示,產(chǎn)出的新奇水果的箱數(shù)x(單位:十箱)與成本y(單位:千元)的關系如下:x13412y5152258y與x可用回歸方程 ( 其中,為常數(shù))進行模擬()若該農(nóng)戶產(chǎn)出的該新奇水果的價格為150元/箱,試預測該新奇水果100箱的利潤是多少元|()據(jù)統(tǒng)計,10月份的連續(xù)11天中該農(nóng)戶每天為甲地配送的該新奇水果的箱數(shù)的頻率分布直方圖如圖所示(i)若從箱數(shù)在內(nèi)

5、的天數(shù)中隨機抽取2天,估計恰有1天的水果箱數(shù)在內(nèi)的概率;()求這11天該農(nóng)戶每天為甲地配送的該新奇水果的箱數(shù)的平均值(每組用該組區(qū)間的中點值作代表)參考數(shù)據(jù)與公式:設,則0.541.81.530.45線性回歸直線中,19(12分)已知在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.(1)求曲線與直線的直角坐標方程;(2)若曲線與直線交于兩點,求的值.20(12分)已知函數(shù),.(1)當為何值時,軸為曲線的切線;(2)用表示、中的最大值,設函數(shù),當時,討論零點的個數(shù).21(12分)設函數(shù).(1)若函數(shù)在是單調(diào)遞

6、減的函數(shù),求實數(shù)的取值范圍;(2)若,證明:.22(10分)如圖,在四棱錐中,底面為菱形,底面,.(1)求證:平面;(2)若直線與平面所成的角為,求平面與平面所成銳二面角的余弦值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1D【解析】根據(jù)y=fx+1為奇函數(shù),得到函數(shù)關于1,0中心對稱,排除AB,計算f1.52排除C,得到答案.【詳解】y=fx+1為奇函數(shù),即fx+1=-f-x+1,函數(shù)關于1,0中心對稱,排除AB.f1.521.5-1=2,排除C.故選:D.【點睛】本題考查了函數(shù)圖像的識別,確定函數(shù)關于1,0中心對稱是解題的

7、關鍵.2A【解析】先利用復數(shù)的除法運算法則求出的值,再利用共軛復數(shù)的定義求出a+bi,從而確定a,b的值,求出a+b【詳解】i,a+bii,a0,b1,a+b1,故選:A【點睛】本題主要考查了復數(shù)代數(shù)形式的乘除運算,考查了共軛復數(shù)的概念,是基礎題3B【解析】解:因為集合中的元素表示的是被12整除的正整數(shù),那么可得為1,2,3,4,6,,12故選B4C【解析】求出集合的等價條件,利用交集的定義進行求解即可.【詳解】解:,故選:C.【點睛】本題主要考查了對數(shù)的定義域與指數(shù)不等式的求解以及集合的基本運算,屬于基礎題.5A【解析】根據(jù)充分條件和必要條件的定義,結(jié)合線面垂直的性質(zhì)進行判斷即可.【詳解】當

8、m平面時,若l”則“l(fā)m”成立,即充分性成立,若lm,則l或l,即必要性不成立,則“l(fā)”是“l(fā)m”充分不必要條件,故選:A.【點睛】本題主要考查充分條件和必要條件的判斷,結(jié)合線面垂直的性質(zhì)和定義是解決本題的關鍵.難度不大,屬于基礎題6B【解析】根據(jù)誘導公式化簡再分析即可.【詳解】因為,所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分條件.故選:B【點睛】本題考查充分與必要條件的判定以及誘導公式的運用,屬于基礎題.7A【解析】取,得到,取,則,計算得到答案.【詳解】取,得到;取,則.故.故選:.【點睛】本題考查了二項式定理的應用,取和是解題的關鍵.8A【解析】根

9、據(jù)題意,由拋物線的方程可得其焦點坐標,由此可得雙曲線的焦點坐標,由雙曲線的幾何性質(zhì)可得,解可得,由離心率公式計算可得答案【詳解】根據(jù)題意,拋物線的焦點為,則雙曲線的焦點也為,即,則有,解可得,雙曲線的離心率.故選:A【點睛】本題主要考查雙曲線、拋物線的標準方程,關鍵是求出拋物線焦點的坐標,意在考查學生對這些知識的理解掌握水平9C【解析】畫出圖形,以為基底將向量進行分解后可得結(jié)果【詳解】畫出圖形,如下圖選取為基底,則,故選C【點睛】應用平面向量基本定理應注意的問題(1)只要兩個向量不共線,就可以作為平面的一組基底,基底可以有無窮多組,在解決具體問題時,合理選擇基底會給解題帶來方便(2)利用已知向

10、量表示未知向量,實質(zhì)就是利用平行四邊形法則或三角形法則進行向量的加減運算或數(shù)乘運算10C【解析】根據(jù)雙曲線的標準方程,即可寫出漸近線方程.【詳解】 雙曲線,雙曲線的漸近線方程為,故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),屬于容易題.11D【解析】中位數(shù)指一串數(shù)據(jù)按從?。ù螅┑酱螅ㄐ。┡帕泻?,處在最中間的那個數(shù),平均數(shù)指一串數(shù)據(jù)的算術平均數(shù).【詳解】由莖葉圖知,甲的中位數(shù)為,故;乙的平均數(shù)為,解得,所以.故選:D.【點睛】本題考查莖葉圖的應用,涉及到中位數(shù)、平均數(shù)的知識,是一道容易題.12D【解析】先將所求問題轉(zhuǎn)化為對任意恒成立,即得圖象恒在函數(shù)圖象的上方,再利用數(shù)形結(jié)合即可解決.【詳

11、解】由得,由題意函數(shù)得圖象恒在函數(shù)圖象的上方,作出函數(shù)的圖象如圖所示過原點作函數(shù)的切線,設切點為,則,解得,所以切線斜率為,所以,解得.故選:D.【點睛】本題考查導數(shù)在不等式恒成立中的應用,考查了學生轉(zhuǎn)化與化歸思想以及數(shù)形結(jié)合的思想,是一道中檔題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】由三個年級人數(shù)成等差數(shù)列和總?cè)藬?shù)可求得高二年級共有人,根據(jù)抽樣比可求得結(jié)果.【詳解】設高一、高二、高三人數(shù)分別為,則且,解得:,用分層抽樣的方法抽取人,那么高二年級被抽取的人數(shù)為人故答案為:.【點睛】本題考查分層抽樣問題的求解,涉及到等差數(shù)列的相關知識,屬于基礎題.14【解析】根據(jù)垂直向量的

12、坐標表示可得出關于實數(shù)的等式,即可求得實數(shù)的值.【詳解】,且,則,解得.故答案為:.【點睛】本題考查利用向量垂直求參數(shù),涉及垂直向量的坐標表示,考查計算能力,屬于基礎題.15【解析】可證,則為的外心,又則平面即可求出,的值,再由勾股定理求出外接球的半徑,最后根據(jù)體積公式計算可得.【詳解】解:,因為為的中點,所以為的外心,因為,所以點在內(nèi)的投影為的外心,所以平面,平面,所以,所以,又球心在上,設,則,所以,所以球O體積,.故答案為:【點睛】本題考查多面體外接球體積的求法,考查空間想象能力與思維能力,考查計算能力,屬于中檔題16192【解析】根據(jù)題意,分步進行分析:,在三對父子中任選1對,安排在相

13、鄰的位置上,將剩下的4人安排在剩下的4個位置,要求父子不能坐在相鄰的位置,由分步計數(shù)原理計算可得答案【詳解】根據(jù)題意,分步進行分析:,在三對父子中任選1對,有3種選法,由圖可得相鄰的位置有4種情況,將選出的1對父子安排在相鄰的位置,有種安排方法;,將剩下的4人安排在剩下的4個位置,要求父子不能坐在相鄰的位置,有種安排方法,則有且僅有一對父子是相鄰而坐的坐法種;故答案為:【點睛】本題考查排列、組合的應用,涉及分步計數(shù)原理的應用,屬于基礎題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17 (1) (2)證明見解析【解析】(1)因為,所以,所以,即,又因為,所以數(shù)列為等差數(shù)列,且公

14、差為1,首項為1,則,即.設的公差為,則,所以(),則(),所以,因此,綜上,(2)設數(shù)列的前n項和為,則兩式相減得,所以, 設則,所以.18()1131;()(i);()125箱【解析】()根據(jù)參考數(shù)據(jù)得到和,代入得到回歸直線方程,再代入求成本,最后代入利潤公式;()()首先分別計算水果箱數(shù)在和內(nèi)的天數(shù),再用編號列舉基本事件的方法求概率;()根據(jù)頻率分布直方圖直接計算結(jié)果.【詳解】()根據(jù)題意,所以,所以又,所以所以時,(千元),即該新奇水果100箱的成本為8314元,故該新奇水果100箱的利潤()(i)根據(jù)頻率分布直方圖,可知水果箱數(shù)在內(nèi)的天數(shù)為設這兩天分別為a,b,水果箱數(shù)在內(nèi)的天數(shù)為,

15、設這四天分別為A,B,C,D,所以隨機抽取2天的基本結(jié)果為,共15種滿足恰有1天的水果箱數(shù)在內(nèi)的結(jié)果為,共8種,所以估計恰有1天的水果箱數(shù)在內(nèi)的概率為 ()這11天該農(nóng)戶每天為甲地配送的該新奇水果的箱數(shù)的平均值為(箱)【點睛】本題考查考查回歸直線方程,統(tǒng)計,概率,均值的綜合問題,意在考查分析數(shù)據(jù),應用數(shù)據(jù),解決問題的能力,屬于中檔題型.19(1)曲線的直角坐標方程為;直線的直角坐標方程為(2)【解析】(1)由公式可化極坐標方程為直角坐標方程,消參法可化參數(shù)方程為普通方程;(2)聯(lián)立兩曲線方程,解方程組得兩交點坐標,從而得兩點間距離【詳解】解:(1)曲線的直角坐標方程為直線的直角坐標方程為(2)

16、據(jù)解,得或【點睛】本題考查極坐標與直角坐標的互化,考查參數(shù)方程與普通方程的互化,屬于基礎題20(1);(2)見解析.【解析】(1)設切點坐標為,然后根據(jù)可解得實數(shù)的值;(2)令,然后對實數(shù)進行分類討論,結(jié)合和的符號來確定函數(shù)的零點個數(shù).【詳解】(1),設曲線與軸相切于點,則,即,解得.所以,當時,軸為曲線的切線;(2)令,則,由,得.當時,此時,函數(shù)為增函數(shù);當時,此時,函數(shù)為減函數(shù).,.當,即當時,函數(shù)有一個零點;當,即當時,函數(shù)有兩個零點;當,即當時,函數(shù)有三個零點;當,即當時,函數(shù)有兩個零點;當,即當時,函數(shù)只有一個零點.綜上所述,當或時,函數(shù)只有一個零點;當或時,函數(shù)有兩個零點;當時,

17、函數(shù)有三個零點.【點睛】本題考查了利用導數(shù)的幾何意義研究切線方程和利用導數(shù)研究函數(shù)的單調(diào)性與極值,關鍵是分類討論思想的應用,屬難題21(1)(2)證明見解析【解析】(1)求出導函數(shù),由在上恒成立,采用分離參數(shù)法求解;(2)觀察函數(shù),不等式湊配后知,利用時可證結(jié)論【詳解】(1)因為在上單調(diào)遞減,所以,即在上恒成立因為在上是單調(diào)遞減的,所以,所以(2)因為,所以由(1)知,當時,在上單調(diào)遞減所以即所以.【點睛】本題考查用導數(shù)研究函數(shù)的單調(diào)性,考查用導數(shù)證明不等式解題關鍵是把不等式與函數(shù)的結(jié)論聯(lián)系起來,利用函數(shù)的特例得出不等式的證明22(1)證明見解析(2)【解析】(1)由底面為菱形,得,再由底面,可得,結(jié)合線面垂直的判定可得平面;(2)以點為坐標原點,以所在直線及過點且垂直于平面的直線分別為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論