2022屆貴州省黔東南州高考仿真模擬數(shù)學(xué)試卷含解析_第1頁(yè)
2022屆貴州省黔東南州高考仿真模擬數(shù)學(xué)試卷含解析_第2頁(yè)
2022屆貴州省黔東南州高考仿真模擬數(shù)學(xué)試卷含解析_第3頁(yè)
2022屆貴州省黔東南州高考仿真模擬數(shù)學(xué)試卷含解析_第4頁(yè)
2022屆貴州省黔東南州高考仿真模擬數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角條形碼粘貼處。2作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡

2、一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1若是第二象限角且sin =,則=ABCD2過(guò)拋物線()的焦點(diǎn)且傾斜角為的直線交拋物線于兩點(diǎn).,且在第一象限,則( )ABCD3已知函數(shù),關(guān)于x的方程f(x)a存在四個(gè)不同實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是( )A(0,1)(1,e)BCD(0,1)4已知函數(shù),集合,則( )ABCD5已知函數(shù),若曲線在點(diǎn)處的切線方程為,則實(shí)數(shù)的取值為( )A-2B-1C1D26如圖,在平行四邊形中,為對(duì)角線的交點(diǎn),點(diǎn)為平行四邊形外一點(diǎn),且,則( )ABCD7已知排球發(fā)球考試規(guī)則:每位考生最多可發(fā)球三次,若

3、發(fā)球成功,則停止發(fā)球,否則一直發(fā)到次結(jié)束為止某考生一次發(fā)球成功的概率為,發(fā)球次數(shù)為,若的數(shù)學(xué)期望,則的取值范圍為( )ABCD8已知向量滿足,且與的夾角為,則( )ABCD9的展開(kāi)式中的系數(shù)為( )A30B40C40D5010已知拋物線的焦點(diǎn)與雙曲線的一個(gè)焦點(diǎn)重合,且拋物線的準(zhǔn)線被雙曲線截得的線段長(zhǎng)為,那么該雙曲線的離心率為( )ABCD11已知復(fù)數(shù)滿足,則的最大值為( )ABCD612已知雙曲線的一條漸近線與直線垂直,則雙曲線的離心率等于( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知三棱錐中,則該三棱錐的外接球的表面積是_.14已知雙曲線的一條漸近線為,且經(jīng)過(guò)拋物線的

4、焦點(diǎn),則雙曲線的標(biāo)準(zhǔn)方程為_(kāi).15過(guò)動(dòng)點(diǎn)作圓:的切線,其中為切點(diǎn),若(為坐標(biāo)原點(diǎn)),則的最小值是_16已知雙曲線的兩條漸近線方程為,若頂點(diǎn)到漸近線的距離為1,則雙曲線方程為 三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17(12分)如圖中,為的中點(diǎn),.(1)求邊的長(zhǎng);(2)點(diǎn)在邊上,若是的角平分線,求的面積.18(12分)已知函數(shù).(1)求不等式的解集;(2)若不等式對(duì)恒成立,求實(shí)數(shù)的取值范圍.19(12分)平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為,點(diǎn)(1)求曲線的極坐

5、標(biāo)方程與直線的直角坐標(biāo)方程;(2)若直線與曲線交于點(diǎn),曲線與曲線交于點(diǎn),求的面積20(12分)設(shè)函數(shù).(1)求的值;(2)若,求函數(shù)的單調(diào)遞減區(qū)間.21(12分)在中, 角,的對(duì)邊分別為, 其中, .(1)求角的值;(2)若,為邊上的任意一點(diǎn),求的最小值.22(10分)已知.() 若,求不等式的解集;(),求實(shí)數(shù)的取值范圍.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1B【解析】由是第二象限角且sin =知:,所以2C【解析】作,;,由題意,由二倍角公式即得解.【詳解】由題意,準(zhǔn)線:,作,;,設(shè),故,.故選:C【點(diǎn)睛】本題考查了

6、拋物線的性質(zhì)綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.3D【解析】原問(wèn)題轉(zhuǎn)化為有四個(gè)不同的實(shí)根,換元處理令t,對(duì)g(t)進(jìn)行零點(diǎn)個(gè)數(shù)討論.【詳解】由題意,a2,令t,則f(x)a記g(t)當(dāng)t2時(shí),g(t)2ln(t)(t)單調(diào)遞減,且g(2)2,又g(2)2,只需g(t)2在(2,+)上有兩個(gè)不等于2的不等根則,記h(t)(t2且t2),則h(t)令(t),則(t)2(2)2,(t)在(2,2)大于2,在(2,+)上小于2h(t)在(2,2)上大于2,在(2,+)上小于2,則h(t)在(2,2)上單調(diào)遞增,在(2,+)上單調(diào)遞減由,可得,即a2實(shí)數(shù)a的取值范圍是(2,2

7、)故選:D【點(diǎn)睛】此題考查方程的根與函數(shù)零點(diǎn)問(wèn)題,關(guān)鍵在于等價(jià)轉(zhuǎn)化,將問(wèn)題轉(zhuǎn)化為通過(guò)導(dǎo)函數(shù)討論函數(shù)單調(diào)性解決問(wèn)題.4C【解析】分別求解不等式得到集合,再利用集合的交集定義求解即可.【詳解】,,故選C【點(diǎn)睛】本題主要考查了集合的基本運(yùn)算,難度容易.5B【解析】求出函數(shù)的導(dǎo)數(shù),利用切線方程通過(guò)f(0),求解即可;【詳解】f (x)的定義域?yàn)椋?,+),因?yàn)閒(x)a,曲線yf(x)在點(diǎn)(0,f(0)處的切線方程為y2x,可得1a2,解得a1,故選:B【點(diǎn)睛】本題考查函數(shù)的導(dǎo)數(shù)的幾何意義,切線方程的求法,考查計(jì)算能力6D【解析】連接,根據(jù)題目,證明出四邊形為平行四邊形,然后,利用向量的線性運(yùn)算即可求

8、出答案【詳解】連接,由,知,四邊形為平行四邊形,可得四邊形為平行四邊形,所以.【點(diǎn)睛】本題考查向量的線性運(yùn)算問(wèn)題,屬于基礎(chǔ)題7A【解析】根據(jù)題意,分別求出再根據(jù)離散型隨機(jī)變量期望公式進(jìn)行求解即可【詳解】由題可知,則解得,由可得,答案選A【點(diǎn)睛】本題考查離散型隨機(jī)變量期望的求解,易錯(cuò)點(diǎn)為第三次發(fā)球分為兩種情況:三次都不成功、第三次成功8A【解析】根據(jù)向量的運(yùn)算法則展開(kāi)后利用數(shù)量積的性質(zhì)即可.【詳解】.故選:A.【點(diǎn)睛】本題主要考查數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.9C【解析】先寫(xiě)出的通項(xiàng)公式,再根據(jù)的產(chǎn)生過(guò)程,即可求得.【詳解】對(duì)二項(xiàng)式,其通項(xiàng)公式為的展開(kāi)式中的系數(shù)是展開(kāi)式中的系數(shù)與的系數(shù)之和.令,可得

9、的系數(shù)為;令,可得的系數(shù)為;故的展開(kāi)式中的系數(shù)為.故選:C.【點(diǎn)睛】本題考查二項(xiàng)展開(kāi)式中某一項(xiàng)系數(shù)的求解,關(guān)鍵是對(duì)通項(xiàng)公式的熟練使用,屬基礎(chǔ)題.10A【解析】由拋物線的焦點(diǎn)得雙曲線的焦點(diǎn),求出,由拋物線準(zhǔn)線方程被曲線截得的線段長(zhǎng)為,由焦半徑公式,聯(lián)立求解.【詳解】解:由拋物線,可得,則,故其準(zhǔn)線方程為,拋物線的準(zhǔn)線過(guò)雙曲線的左焦點(diǎn),拋物線的準(zhǔn)線被雙曲線截得的線段長(zhǎng)為,又,則雙曲線的離心率為故選:【點(diǎn)睛】本題考查拋物線的性質(zhì)及利用過(guò)雙曲線的焦點(diǎn)的弦長(zhǎng)求離心率. 弦過(guò)焦點(diǎn)時(shí),可結(jié)合焦半徑公式求解弦長(zhǎng)11B【解析】設(shè),利用復(fù)數(shù)幾何意義計(jì)算.【詳解】設(shè),由已知,所以點(diǎn)在單位圓上,而,表示點(diǎn)到的距離,故

10、.故選:B.【點(diǎn)睛】本題考查求復(fù)數(shù)模的最大值,其實(shí)本題可以利用不等式來(lái)解決.12B【解析】由于直線的斜率k,所以一條漸近線的斜率為,即,所以,選B.二、填空題:本題共4小題,每小題5分,共20分。13【解析】將三棱錐補(bǔ)成長(zhǎng)方體,設(shè),設(shè)三棱錐的外接球半徑為,求得的值,然后利用球體表面積公式可求得結(jié)果.【詳解】將三棱錐補(bǔ)成長(zhǎng)方體,設(shè),設(shè)三棱錐的外接球半徑為,則,由勾股定理可得,上述三個(gè)等式全部相加得,因此,三棱錐的外接球面積為.故答案為:.【點(diǎn)睛】本題考查三棱錐外接球表面積的計(jì)算,根據(jù)三棱錐對(duì)棱長(zhǎng)相等將三棱錐補(bǔ)成長(zhǎng)方體是解答的關(guān)鍵,考查推理能力,屬于中等題.14【解析】設(shè)以直線為漸近線的雙曲線的方

11、程為,再由雙曲線經(jīng)過(guò)拋物線焦點(diǎn),能求出雙曲線方程【詳解】解:設(shè)以直線為漸近線的雙曲線的方程為,雙曲線經(jīng)過(guò)拋物線焦點(diǎn),雙曲線方程為,故答案為:【點(diǎn)睛】本題主要考查雙曲線方程的求法,考查拋物線、雙曲線簡(jiǎn)單性質(zhì)的合理運(yùn)用,屬于中檔題15【解析】解答:由圓的方程可得圓心C的坐標(biāo)為(2,2),半徑等于1.由M(a,b),則|MN|2=(a2)2+(b2)212=a2+b24a4b+7,|MO|2=a2+b2.由|MN|=|MO|,得a2+b24a4b+7=a2+b2.整理得:4a+4b7=0.a,b滿足的關(guān)系為:4a+4b7=0.求|MN|的最小值,就是求|MO|的最小值在直線4a+4b7=0上取一點(diǎn)到

12、原點(diǎn)距離最小,由“垂線段最短”得,直線OM垂直直線4a+4b7=0,由點(diǎn)到直線的距離公式得:MN的最小值為: .16【解析】由已知,即,取雙曲線頂點(diǎn)及漸近線,則頂點(diǎn)到該漸近線的距離為,由題可知,所以,則所求雙曲線方程為.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17(1)10;(2).【解析】(1)由題意可得cosADBcosADC,由已知利用余弦定理可得:9+BD252+9+BD2160,進(jìn)而解得BC的值(2)由(1)可知ADC為直角三角形,可求SADC6,SABC2SADC12,利用角平分線的性質(zhì)可得,根據(jù)SABCSBCE+SACE可求SBCE的值【詳解】(1)因?yàn)樵谶?/p>

13、上,所以,在和中由余弦定理,得,因?yàn)?,所以,所以?所以邊的長(zhǎng)為10.(2)由(1)知為直角三角形,所以,.因?yàn)槭堑慕瞧椒志€,所以.所以,所以.即的面積為.【點(diǎn)睛】本題主要考查了余弦定理,三角形的面積公式,角平分線的性質(zhì)在解三角形中的綜合應(yīng)用,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于中檔題18(1)(2)【解析】(1)按絕對(duì)值的定義分類討論去絕對(duì)值符號(hào)后解不等式;(2)不等式轉(zhuǎn)化為,求出在上的最小值即可,利用絕對(duì)值定義分類討論去絕對(duì)值符號(hào)后可求得函數(shù)最小值【詳解】解:(1)或或解得或或無(wú)解綜上不等式的解集為(2)時(shí),即所以只需在時(shí)恒成立即可令,由解析式得在上是增函數(shù),當(dāng)時(shí),即【點(diǎn)睛】本題考查解絕對(duì)值

14、不等式,考查不等式恒成立問(wèn)題,解決絕對(duì)值不等式的問(wèn)題,分類討論是常用方法掌握分類討論思想是解題關(guān)鍵19(1)(2)【解析】(1)根據(jù)題意代入公式化簡(jiǎn)即可得到.(2)聯(lián)立極坐標(biāo)方程通過(guò)極坐標(biāo)的幾何意義求解,再求點(diǎn)到直線的距離即可算出三角形面積.【詳解】解:(1)曲線,即曲線的極坐標(biāo)方程為直線的極坐標(biāo)方程為,即,直線的直角坐標(biāo)方程為(2)設(shè),解得又,(舍去)點(diǎn)到直線的距離為,的面積為【點(diǎn)睛】此題考查參數(shù)方程,極坐標(biāo),直角坐標(biāo)之間相互轉(zhuǎn)化,注意參數(shù)方程只能先轉(zhuǎn)化為直角坐標(biāo)再轉(zhuǎn)化為極坐標(biāo),屬于較易題目.20(1)(2)的遞減區(qū)間為和【解析】(1)化簡(jiǎn)函數(shù),代入,計(jì)算即可;(2)先利用正弦函數(shù)的圖象與性

15、質(zhì)求出函數(shù)的單調(diào)遞減區(qū)間,再結(jié)合即可求出.【詳解】(1),從而.(2)令.解得.即函數(shù)的所有減區(qū)間為,考慮到,取,可得,故的遞減區(qū)間為和.【點(diǎn)睛】本題主要考查了三角函數(shù)的恒等變形,正弦函數(shù)的圖象與性質(zhì),屬于中檔題.21(1);(2).【解析】(1)利用余弦定理和二倍角的正弦公式,化簡(jiǎn)即可得出結(jié)果;(2)在中, 由余弦定理得,在中結(jié)合正弦定理求出,從而得出,即可得出的解析式,最后結(jié)合斜率的幾何意義,即可求出的最小值.【詳解】(1) ,由題知,則,則,;(2)在中, 由余弦定理得,設(shè), 其中.在中,所以,所以的幾何意義為兩點(diǎn)連線斜率的相反數(shù),數(shù)形結(jié)合可得,故的最小值為.【點(diǎn)睛】本題考查正弦定理和余弦定理的實(shí)際應(yīng)用,還涉及二倍角正弦公式和誘導(dǎo)公式,考查計(jì)算能力.22();().【解析】()利用零點(diǎn)分段討

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論