版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、2021-2022高考數(shù)學模擬試卷注意事項1考試結束后,請將本試卷和答題卡一并交回2答題前,請務必將自己的姓名、準考證號用05毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置3請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符4作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效5如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目
2、要求的。1一個空間幾何體的正視圖是長為4,寬為的長方形,側視圖是邊長為2的等邊三角形,俯視圖如圖所示,則該幾何體的體積為( )ABCD2過拋物線C:y24x的焦點F,且斜率為的直線交C于點M(M在x軸的上方),l為C的準線,點N在l上且MNl,則M到直線NF的距離為( )A BCD3已知函數(shù)的最大值為,若存在實數(shù),使得對任意實數(shù)總有成立,則的最小值為( )ABCD4執(zhí)行如圖所示的程序框圖,若輸入,則輸出的值為( )A0B1CD5若,點C在AB上,且,設,則的值為( )ABCD6已知,則( )ABCD7如圖,在四邊形中,則的長度為( )ABCD8已知拋物線:()的焦點為,為該拋物線上一點,以為圓
3、心的圓與的準線相切于點,則拋物線方程為( )ABCD9設i為虛數(shù)單位,若復數(shù),則復數(shù)z等于( )ABCD010已知函數(shù),則( )A1B2C3D411已知非零向量,滿足,則與的夾角為( )ABCD12若滿足約束條件則的最大值為( )A10B8C5D3二、填空題:本題共4小題,每小題5分,共20分。13定義在R上的函數(shù)滿足:對任意的,都有;當時,則函數(shù)的解析式可以是_.14已知等邊三角形的邊長為1,點、分別為線段、上的動點,則取值的集合為_15在回歸分析的問題中,我們可以通過對數(shù)變換把非線性回歸方程,()轉化為線性回歸方程,即兩邊取對數(shù),令,得到.受其啟發(fā),可求得函數(shù)()的值域是_.16如圖,在三
4、棱錐ABCD中,點E在BD上,EAEBECED,BDCD,ACD為正三角形,點M,N分別在AE,CD上運動(不含端點),且AMCN,則當四面體CEMN的體積取得最大值時,三棱錐ABCD的外接球的表面積為_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)如圖1,已知四邊形BCDE為直角梯形,且,A為BE的中點將沿AD折到位置如圖,連結PC,PB構成一個四棱錐()求證;()若平面求二面角的大小;在棱PC上存在點M,滿足,使得直線AM與平面PBC所成的角為,求的值18(12分)某校為了解校園安全教育系列活動的成效,對全校學生進行一次安全意識測試,根據(jù)測試成績評定“合格”
5、、“不合格”兩個等級,同時對相應等級進行量化:“合格”記分,“不合格”記分.現(xiàn)隨機抽取部分學生的成績,統(tǒng)計結果及對應的頻率分布直方圖如下所示:等級不合格合格得分頻數(shù)624()若測試的同學中,分數(shù)段內(nèi)女生的人數(shù)分別為,完成列聯(lián)表,并判斷:是否有以上的把握認為性別與安全意識有關? 是否合格 性別 不合格合格總計男生女生總計()用分層抽樣的方法,從評定等級為“合格”和“不合格”的學生中,共選取人進行座談,現(xiàn)再從這人中任選人,記所選人的量化總分為,求的分布列及數(shù)學期望;()某評估機構以指標(,其中表示的方差)來評估該校安全教育活動的成效,若,則認定教育活動是有效的;否則認定教育活動無效,應調(diào)整安全教育
6、方案.在()的條件下,判斷該校是否應調(diào)整安全教育方案?附表及公式:,其中.19(12分)如圖,在四棱錐中,是邊長為的正方形的中心,平面,為的中點.()求證:平面平面; ()若,求二面角的余弦值.20(12分)如圖,在四棱錐PABCD中,四邊形ABCD為平行四邊形,BDDC,PCD為正三角形,平面PCD平面ABCD,E為PC的中點 (1)證明:AP平面EBD;(2)證明:BEPC21(12分)如圖,已知拋物線:與圓: ()相交于, , ,四個點,(1)求的取值范圍;(2)設四邊形的面積為,當最大時,求直線與直線的交點的坐標.22(10分)已知動點到定點的距離比到軸的距離多.(1)求動點的軌跡的方
7、程;(2)設,是軌跡在上異于原點的兩個不同點,直線和的傾斜角分別為和,當,變化且時,證明:直線恒過定點,并求出該定點的坐標.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】由三視圖確定原幾何體是正三棱柱,由此可求得體積【詳解】由題意原幾何體是正三棱柱,故選:B【點睛】本題考查三視圖,考查棱柱的體積解題關鍵是由三視圖不愿出原幾何體2C【解析】聯(lián)立方程解得M(3,),根據(jù)MNl得|MN|MF|4,得到MNF是邊長為4的等邊三角形,計算距離得到答案.【詳解】依題意得F(1,0),則直線FM的方程是y(x1)由得x或x3.由M在
8、x軸的上方得M(3,),由MNl得|MN|MF|314又NMF等于直線FM的傾斜角,即NMF60,因此MNF是邊長為4的等邊三角形點M到直線NF的距離為故選:C.【點睛】本題考查了直線和拋物線的位置關系,意在考查學生的計算能力和轉化能力.3B【解析】根據(jù)三角函數(shù)的兩角和差公式得到,進而可以得到函數(shù)的最值,區(qū)間(m,n)長度要大于等于半個周期,最終得到結果.【詳解】函數(shù) 則函數(shù)的最大值為2,存在實數(shù),使得對任意實數(shù)總有成立,則區(qū)間(m,n)長度要大于等于半個周期,即 故答案為:B.【點睛】這個題目考查了三角函數(shù)的兩角和差的正余弦公式的應用,以及三角函數(shù)的圖像的性質(zhì)的應用,題目比較綜合.4A【解析
9、】根據(jù)輸入的值大小關系,代入程序框圖即可求解.【詳解】輸入,因為,所以由程序框圖知,輸出的值為.故選:A【點睛】本題考查了對數(shù)式大小比較,條件程序框圖的簡單應用,屬于基礎題.5B【解析】利用向量的數(shù)量積運算即可算出【詳解】解:,又在上,故選:【點睛】本題主要考查了向量的基本運算的應用,向量的基本定理的應用及向量共線定理等知識的綜合應用6C【解析】利用誘導公式得,再利用倍角公式,即可得答案.【詳解】由可得,.故選:C.【點睛】本題考查誘導公式、倍角公式,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意三角函數(shù)的符號.7D【解析】設,在中,由余弦定理得,從而求得,再由
10、由正弦定理得,求得,然后在中,用余弦定理求解.【詳解】設,在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D【點睛】本題主要考查正弦定理和余弦定理的應用,還考查了數(shù)形結合的思想和運算求解的能力,屬于中檔題.8C【解析】根據(jù)拋物線方程求得點的坐標,根據(jù)軸、列方程,解方程求得的值.【詳解】不妨設在第一象限,由于在拋物線上,所以,由于以為圓心的圓與的準線相切于點,根據(jù)拋物線的定義可知,、軸,且.由于,所以直線的傾斜角為,所以,解得,或(由于,故舍去).所以拋物線的方程為.故選:C【點睛】本小題主要考查拋物線的定義,考查直線的斜率,考查數(shù)形結合的數(shù)學思想方法,屬于
11、中檔題.9B【解析】根據(jù)復數(shù)除法的運算法則,即可求解.【詳解】.故選:B.【點睛】本題考查復數(shù)的代數(shù)運算,屬于基礎題.10C【解析】結合分段函數(shù)的解析式,先求出,進而可求出.【詳解】由題意可得,則.故選:C.【點睛】本題考查了求函數(shù)的值,考查了分段函數(shù)的性質(zhì),考查運算求解能力,屬于基礎題.11B【解析】由平面向量垂直的數(shù)量積關系化簡,即可由平面向量數(shù)量積定義求得與的夾角.【詳解】根據(jù)平面向量數(shù)量積的垂直關系可得,所以,即,由平面向量數(shù)量積定義可得,所以,而,即與的夾角為.故選:B【點睛】本題考查了平面向量數(shù)量積的運算,平面向量夾角的求法,屬于基礎題.12D【解析】畫出可行域,將化為,通過平移即
12、可判斷出最優(yōu)解,代入到目標函數(shù),即可求出最值.【詳解】解:由約束條件作出可行域如圖,化目標函數(shù)為直線方程的斜截式,.由圖可知當直線過時,直線在軸上的截距最大,有最大值為3.故選:D.【點睛】本題考查了線性規(guī)劃問題.一般第一步畫出可行域,然后將目標函數(shù)轉化為 的形式,在可行域內(nèi)通過平移找到最優(yōu)解,將最優(yōu)解帶回到目標函數(shù)即可求出最值.注意畫可行域時,邊界線的虛實問題.二、填空題:本題共4小題,每小題5分,共20分。13(或,答案不唯一)【解析】由可得是奇函數(shù),再由時,可得到滿足條件的奇函數(shù)非常多,屬于開放性試題.【詳解】在中,令,得;令,則,故是奇函數(shù),由時,知或等,答案不唯一.故答案為:(或,答
13、案不唯一).【點睛】本題考查抽象函數(shù)的性質(zhì),涉及到由表達式確定函數(shù)奇偶性,是一道開放性的題,難度不大.14【解析】根據(jù)題意建立平面直角坐標系,設三角形各點的坐標,依題意求出,的表達式,再進行數(shù)量積的運算,最后求和即可得出結果.【詳解】解: 以的中點為坐標原點,所在直線為軸,線段的垂直平分線為軸建立平面直角坐標系,如圖所示,則,則,設, ,即點的坐標為,則,所以故答案為: 【點睛】本題考查平面向量的坐標表示和線性運算,以及平面向量基本定理和數(shù)量積的運算,是中檔題.15【解析】轉化()為,即得解.【詳解】由題意:().故答案為:【點睛】本題考查類比法求函數(shù)的值域,考查了學生邏輯推理,轉化劃歸,數(shù)學
14、運算的能力,屬于中檔題.1632【解析】設EDa,根據(jù)勾股定理的逆定理可以通過計算可以證明出CEED. AMx,根據(jù)三棱錐的體積公式,運用基本不等式,可以求出AM的長度,最后根據(jù)球的表面積公式進行求解即可.【詳解】設EDa,則CDa.可得CE2+DE2CD2,CEED.當平面ABD平面BCD時,當四面體CEMN的體積才有可能取得最大值,設AMx.則四面體CEMN的體積(ax)axax(ax),當且僅當x時取等號.解得a2.此時三棱錐ABCD的外接球的表面積4a232.故答案為:32【點睛】本題考查了基本不等式的應用,考查了球的表面積公式,考查了數(shù)學運算能力和空間想象能力.三、解答題:共70分。
15、解答應寫出文字說明、證明過程或演算步驟。17詳見解析;,或【解析】可以通過已知證明出平面PAB,這樣就可以證明出;以點A為坐標原點,分別以AB,AD,AP為x,y,z軸,建立空間直角坐標系,可以求出相應點的坐標,求出平面PBC的法向量為、平面PCD的法向量,利用空間向量的數(shù)量積,求出二面角的大小;求出平面PBC的法向量,利用線面角的公式求出的值.【詳解】證明:在圖1中,為平行四邊形,當沿AD折起時,即,又,平面PAB,又平面PAB,解:以點A為坐標原點,分別以AB,AD,AP為x,y,z軸,建立空間直角坐標系,由于平面ABCD則0,0,1,0,1,1,1,0,設平面PBC的法向量為y,則,取,
16、得0,設平面PCD的法向量b,則,取,得1,設二面角的大小為,可知為鈍角,則,二面角的大小為設AM與面PBC所成角為,0,1,平面PBC的法向量0,直線AM與平面PBC所成的角為,解得或【點睛】本題考查了利用線面垂直證明線線垂直,考查了利用向量數(shù)量積,求二面角的大小以及通過線面角公式求定比分點問題.18()詳見解析;()詳見解析;()不需要調(diào)整安全教育方案.【解析】(I)根據(jù)題目所給數(shù)據(jù)填寫好列聯(lián)表,計算出的值,由此判斷出在犯錯誤概率不超過的前提下,不能認為性別與安全測試是否合格有關.(II)利用超幾何分布的計算公式,計算出的分布列并求得數(shù)學期望.(III)由(II)中數(shù)據(jù),計算出,進而求得的
17、值,從而得出該校的安全教育活動是有效的,不需要調(diào)整安全教育方案.【詳解】解:()由頻率分布直方圖可知,得分在的頻率為,故抽取的學生答卷總數(shù)為,.性別與合格情況的列聯(lián)表為: 是否合格 性別 不合格合格小計男生女生小計即在犯錯誤概率不超過的前提下,不能認為性別與安全測試是否合格有關.()“不合格”和“合格”的人數(shù)比例為,因此抽取的人中“不合格”有人,“合格”有人,所以可能的取值為, .的分布列為:20151050所以. ()由()知: .故我們認為該校的安全教育活動是有效的,不需要調(diào)整安全教育方案.【點睛】本小題主要考查列聯(lián)表獨立性檢驗,考查超幾何分布的分布列、數(shù)學期望和方差的計算,所以中檔題.1
18、9()詳見解析;().【解析】()由正方形的性質(zhì)得出,由平面得出,進而可推導出平面,再利用面面垂直的判定定理可證得結論;()取的中點,連接、,以、所在直線分別為、軸建立空間直角坐標系,利用空間向量法能求出二面角的余弦值.【詳解】()是正方形,平面,平面,、平面,且,平面 ,又平面,平面平面;()取的中點,連接、,是正方形,易知、兩兩垂直,以點為坐標原點,以、所在直線分別為、軸建立如圖所示的空間直角坐標系,在中,、,設平面的一個法向量,由,得,令,則,.設平面的一個法向量,由,得,取,得,得.,二面角為鈍二面角,二面角的余弦值為.【點睛】本題考查面面垂直的證明,同時也考查了利用空間向量法求解二面
19、角,考查推理能力與計算能力,屬于中等題.20(1)見解析(2)見解析【解析】(1)連結AC交BD于點O,連結OE,利用三角形中位線可得APOE,從而可證AP平面EBD;(2)先證明BD平面PCD,再證明PC平面BDE,從而可證BEPC【詳解】證明:(1)連結AC交BD于點O,連結OE因為四邊形ABCD為平行四邊形O為AC中點,又E為PC中點,故APOE,又AP平面EBD,OE平面EBD所以AP平面EBD;(2)PCD為正三角形,E為PC中點所以PCDE因為平面PCD平面ABCD,平面PCD平面ABCDCD,又BD平面ABCD,BDCDBD平面PCD又PC平面PCD,故PCBD又BDDED,BD平面BDE,DE平面BDE故PC平面BDE又BE平面BDE,所以BEPC【點睛】本題主要考查空間位置關系的證明,線面平行一般轉化為線線平行來證明,直線與直線垂直通常利用線面垂直來進行證明,側重考查邏輯推理的核心素養(yǎng).21(1)(2)點的坐標為【解析】將拋物線方程與圓方程聯(lián)立,消去得到關于的一元二次方程, 拋物線與圓有四個交點需滿足關于的一元二次方程在上有兩個不等的實數(shù)根,根據(jù)二次函數(shù)的有關性質(zhì)即可得到關于的不等式組,解不等式即可.不妨設拋物線與圓的四個交點坐標為,據(jù)此可表示出直線、的方程,聯(lián)立方程即可表示出點坐標,再根據(jù)等腰梯形的面積公式可得四邊形的面積的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 涂料調(diào)配工安全生產(chǎn)規(guī)范強化考核試卷含答案
- 蔬菜栽培工崗前激勵考核試卷含答案
- 快遞報價合同范本
- 加工植絨合同范本
- 公司安全合同協(xié)議
- 攤位發(fā)包合同范本
- 車間買賣合同范本
- 鋼筋正規(guī)合同范本
- 部門責任合同范本
- 分批結賬合同范本
- 2026四川農(nóng)商銀行校園招聘1065人考試歷年真題匯編附答案解析
- 培訓學校招生話術
- 人工智能大語言模型應用教程 課件 模塊8 大模型Chat應用
- 2026年山西工程職業(yè)學院單招職業(yè)技能考試題庫及答案解析(名師系列)
- GB/T 46749-2025城市軌道交通站臺屏蔽門系統(tǒng)
- (八年級上冊)【歷史核心要點復習提綱】
- 2026年水利部黃河水利委員會事業(yè)單位公開招聘高校畢業(yè)生(265人)歷年真題匯編及答案解析(奪冠)
- 支付行業(yè)發(fā)展趨勢
- 施工單位安全生產(chǎn)責任制實施細則
- 幼兒學前數(shù)學能力測試題與分析
- 社區(qū)工作者社工面試題及答案解析
評論
0/150
提交評論