版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回2答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用05毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置3請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符4作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效5如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目
2、要求的。1已知拋物線上的點(diǎn)到其焦點(diǎn)的距離比點(diǎn)到軸的距離大,則拋物線的標(biāo)準(zhǔn)方程為( )ABCD2已知ABC中,點(diǎn)P為BC邊上的動(dòng)點(diǎn),則的最小值為()A2BCD3若實(shí)數(shù)、滿足,則的最小值是( )ABCD4函數(shù)()的圖象的大致形狀是( )ABCD5已知排球發(fā)球考試規(guī)則:每位考生最多可發(fā)球三次,若發(fā)球成功,則停止發(fā)球,否則一直發(fā)到次結(jié)束為止某考生一次發(fā)球成功的概率為,發(fā)球次數(shù)為,若的數(shù)學(xué)期望,則的取值范圍為( )ABCD6體育教師指導(dǎo)4個(gè)學(xué)生訓(xùn)練轉(zhuǎn)身動(dòng)作,預(yù)備時(shí),4個(gè)學(xué)生全部面朝正南方向站成一排.訓(xùn)練時(shí),每次都讓3個(gè)學(xué)生“向后轉(zhuǎn)”,若4個(gè)學(xué)生全部轉(zhuǎn)到面朝正北方向,則至少需要“向后轉(zhuǎn)”的次數(shù)是( )A3
3、B4C5D67是正四面體的面內(nèi)一動(dòng)點(diǎn),為棱中點(diǎn),記與平面成角為定值,若點(diǎn)的軌跡為一段拋物線,則( )ABCD8在中,點(diǎn)為中點(diǎn),過點(diǎn)的直線與,所在直線分別交于點(diǎn),若,則的最小值為( )AB2C3D9如果,那么下列不等式成立的是( )ABCD10已知拋物線,F(xiàn)為拋物線的焦點(diǎn)且MN為過焦點(diǎn)的弦,若,則的面積為( )ABCD11對(duì)于定義在上的函數(shù),若下列說法中有且僅有一個(gè)是錯(cuò)誤的,則錯(cuò)誤的一個(gè)是( )A在上是減函數(shù)B在上是增函數(shù)C不是函數(shù)的最小值D對(duì)于,都有12過雙曲線的右焦點(diǎn)F作雙曲線C的一條弦AB,且,若以AB為直徑的圓經(jīng)過雙曲線C的左頂點(diǎn),則雙曲線C的離心率為( )ABC2D二、填空題:本題共4
4、小題,每小題5分,共20分。13現(xiàn)有一塊邊長(zhǎng)為a的正方形鐵片,鐵片的四角截去四個(gè)邊長(zhǎng)均為x的小正方形,然后做成一個(gè)無蓋方盒,該方盒容積的最大值是_14已知正方體ABCD-A1B1C1D1棱長(zhǎng)為2,點(diǎn)P是上底面A1B1C1D1內(nèi)一動(dòng)點(diǎn),若三棱錐P-ABC的外接球表面積恰為414,則此時(shí)點(diǎn)P構(gòu)成的圖形面積為_.15若函數(shù)在和上均單調(diào)遞增,則實(shí)數(shù)的取值范圍為_16中,角的對(duì)邊分別為,且成等差數(shù)列,若,則的面積為_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)在底面為菱形的四棱柱中,平面.(1)證明:平面;(2)求二面角的正弦值.18(12分)某工廠的機(jī)器上有一種易損元件
5、A,這種元件在使用過程中發(fā)生損壞時(shí),需要送維修處維修工廠規(guī)定當(dāng)日損壞的元件A在次日早上 8:30 之前送到維修處,并要求維修人員當(dāng)日必須完成所有損壞元件A的維修工作每個(gè)工人獨(dú)立維修A元件需要時(shí)間相同維修處記錄了某月從1日到20日每天維修元件A的個(gè)數(shù),具體數(shù)據(jù)如下表:日期 1 日 2 日 3 日 4 日 5 日 6 日 7 日 8 日 9 日 10 日 元件A個(gè)數(shù) 9 15 12 18 12 18 9 9 24 12 日期 11 日 12 日 13 日 14 日 15 日 16 日 17 日 18 日 19 日 20 日 元件A個(gè)數(shù) 12 24 15 15 15 12 15 15 15 24 從
6、這20天中隨機(jī)選取一天,隨機(jī)變量X表示在維修處該天元件A的維修個(gè)數(shù)()求X的分布列與數(shù)學(xué)期望;()若a,b,且b-a=6,求最大值;()目前維修處有兩名工人從事維修工作,為使每個(gè)維修工人每天維修元件A的個(gè)數(shù)的數(shù)學(xué)期望不超過4個(gè),至少需要增加幾名維修工人?(只需寫出結(jié)論)19(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.()求直線的直角坐標(biāo)方程與曲線的普通方程;()已知點(diǎn)設(shè)直線與曲線相交于兩點(diǎn),求的值.20(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程
7、為.(1)求直線和圓的普通方程;(2)已知直線上一點(diǎn),若直線與圓交于不同兩點(diǎn),求的取值范圍.21(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,點(diǎn)的極坐標(biāo)為.(1)求的直角坐標(biāo)方程和的直角坐標(biāo);(2)設(shè)與交于,兩點(diǎn),線段的中點(diǎn)為,求.22(10分)已知函數(shù)是減函數(shù).(1)試確定a的值;(2)已知數(shù)列,求證:.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1B【解析】由拋物線的定義轉(zhuǎn)化,列出方程求出p,即可得到拋物線方程【詳解】由拋物線y22px(p0)上的點(diǎn)
8、M到其焦點(diǎn)F的距離比點(diǎn)M到y(tǒng)軸的距離大,根據(jù)拋物線的定義可得,所以拋物線的標(biāo)準(zhǔn)方程為:y22x故選B【點(diǎn)睛】本題考查了拋物線的簡(jiǎn)單性質(zhì)的應(yīng)用,拋物線方程的求法,屬于基礎(chǔ)題2D【解析】以BC的中點(diǎn)為坐標(biāo)原點(diǎn),建立直角坐標(biāo)系,可得,設(shè),運(yùn)用向量的坐標(biāo)表示,求得點(diǎn)A的軌跡,進(jìn)而得到關(guān)于a的二次函數(shù),可得最小值【詳解】以BC的中點(diǎn)為坐標(biāo)原點(diǎn),建立如圖的直角坐標(biāo)系,可得,設(shè),由,可得,即,則,當(dāng)時(shí),的最小值為故選D【點(diǎn)睛】本題考查向量數(shù)量積的坐標(biāo)表示,考查轉(zhuǎn)化思想和二次函數(shù)的值域解法,考查運(yùn)算能力,屬于中檔題3D【解析】根據(jù)約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,求出最優(yōu)解
9、的坐標(biāo),代入目標(biāo)函數(shù)得答案【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,得,可得點(diǎn),由得,平移直線,當(dāng)該直線經(jīng)過可行域的頂點(diǎn)時(shí),該直線在軸上的截距最小,此時(shí)取最小值,即.故選:D.【點(diǎn)睛】本題考查簡(jiǎn)單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是基礎(chǔ)題4C【解析】對(duì)x分類討論,去掉絕對(duì)值,即可作出圖象.【詳解】 故選C【點(diǎn)睛】識(shí)圖常用的方法(1)定性分析法:通過對(duì)問題進(jìn)行定性的分析,從而得出圖象的上升(或下降)的趨勢(shì),利用這一特征分析解決問題;(2)定量計(jì)算法:通過定量的計(jì)算來分析解決問題;(3)函數(shù)模型法:由所提供的圖象特征,聯(lián)想相關(guān)函數(shù)模型,利用這一函數(shù)模型來分析解決問題5A【解析】根據(jù)
10、題意,分別求出再根據(jù)離散型隨機(jī)變量期望公式進(jìn)行求解即可【詳解】由題可知,則解得,由可得,答案選A【點(diǎn)睛】本題考查離散型隨機(jī)變量期望的求解,易錯(cuò)點(diǎn)為第三次發(fā)球分為兩種情況:三次都不成功、第三次成功6B【解析】通過列舉法,列舉出同學(xué)的朝向,然后即可求出需要向后轉(zhuǎn)的次數(shù).【詳解】“正面朝南”“正面朝北”分別用“”“”表示,利用列舉法,可得下表,原始狀態(tài)第1次“向后轉(zhuǎn)”第2次“向后轉(zhuǎn)”第3次“向后轉(zhuǎn)”第4次“向后轉(zhuǎn)”可知需要的次數(shù)為4次.故選:B.【點(diǎn)睛】本題考查的是求最小推理次數(shù),一般這類題型構(gòu)造較為巧妙,可通過列舉的方法直觀感受,屬于基礎(chǔ)題.7B【解析】設(shè)正四面體的棱長(zhǎng)為,建立空間直角坐標(biāo)系,求出
11、各點(diǎn)的坐標(biāo),求出面的法向量,設(shè)的坐標(biāo),求出向量,求出線面所成角的正弦值,再由角的范圍,結(jié)合為定值,得出為定值,且的軌跡為一段拋物線,所以求出坐標(biāo)的關(guān)系,進(jìn)而求出正切值【詳解】由題意設(shè)四面體的棱長(zhǎng)為,設(shè)為的中點(diǎn),以為坐標(biāo)原點(diǎn),以為軸,以為軸,過垂直于面的直線為軸,建立如圖所示的空間直角坐標(biāo)系,則可得,取的三等分點(diǎn)、如圖,則,所以、,由題意設(shè),和都是等邊三角形,為的中點(diǎn),平面,為平面的一個(gè)法向量,因?yàn)榕c平面所成角為定值,則,由題意可得,因?yàn)榈能壽E為一段拋物線且為定值,則也為定值,可得,此時(shí),則,.故選:B.【點(diǎn)睛】考查線面所成的角的求法,及正切值為定值時(shí)的情況,屬于中等題8B【解析】由,三點(diǎn)共線,
12、可得,轉(zhuǎn)化,利用均值不等式,即得解.【詳解】因?yàn)辄c(diǎn)為中點(diǎn),所以,又因?yàn)椋砸驗(yàn)?,三點(diǎn)共線,所以,所以,當(dāng)且僅當(dāng)即時(shí)等號(hào)成立,所以的最小值為1故選:B【點(diǎn)睛】本題考查了三點(diǎn)共線的向量表示和利用均值不等式求最值,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.9D【解析】利用函數(shù)的單調(diào)性、不等式的基本性質(zhì)即可得出.【詳解】,.故選:D.【點(diǎn)睛】本小題主要考查利用函數(shù)的單調(diào)性比較大小,考查不等式的性質(zhì),屬于基礎(chǔ)題.10A【解析】根據(jù)可知,再利用拋物線的焦半徑公式以及三角形面積公式求解即可.【詳解】由題意可知拋物線方程為,設(shè)點(diǎn)點(diǎn),則由拋物線定義知,則.由得,則.又MN為過焦點(diǎn)的弦,所以,則
13、,所以.故選:A【點(diǎn)睛】本題考查拋物線的方程應(yīng)用,同時(shí)也考查了焦半徑公式等.屬于中檔題.11B【解析】根據(jù)函數(shù)對(duì)稱性和單調(diào)性的關(guān)系,進(jìn)行判斷即可【詳解】由得關(guān)于對(duì)稱,若關(guān)于對(duì)稱,則函數(shù)在上不可能是單調(diào)的,故錯(cuò)誤的可能是或者是,若錯(cuò)誤,則在,上是減函數(shù),在在上是增函數(shù),則為函數(shù)的最小值,與矛盾,此時(shí)也錯(cuò)誤,不滿足條件故錯(cuò)誤的是,故選:【點(diǎn)睛】本題主要考查函數(shù)性質(zhì)的綜合應(yīng)用,結(jié)合對(duì)稱性和單調(diào)性的關(guān)系是解決本題的關(guān)鍵12C【解析】由得F是弦AB的中點(diǎn).進(jìn)而得AB垂直于x軸,得,再結(jié)合關(guān)系求解即可【詳解】因?yàn)?,所以F是弦AB的中點(diǎn).且AB垂直于x軸.因?yàn)橐訟B為直徑的圓經(jīng)過雙曲線C的左頂點(diǎn),所以,即,
14、則,故.故選:C【點(diǎn)睛】本題是對(duì)雙曲線的漸近線以及離心率的綜合考查,是考查基本知識(shí),屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13【解析】由題意容積,求導(dǎo)研究單調(diào)性,分析即得解.【詳解】由題意:容積,則,由得或(舍去),令則為V在定義域內(nèi)唯一的極大值點(diǎn)也是最大值點(diǎn),此時(shí).故答案為:【點(diǎn)睛】本題考查了導(dǎo)數(shù)在實(shí)際問題中的應(yīng)用,考查了學(xué)生數(shù)學(xué)建模,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.14.【解析】設(shè)三棱錐P-ABC的外接球?yàn)榍騉,分別取AC、A1C1的中點(diǎn)O、O1,先確定球心O在線段AC和A1C1中點(diǎn)的連線上,先求出球O的半徑R的值,然后利用勾股定理求出OO的值,于是得出OO1=O
15、O1-OO,再利用勾股定理求出點(diǎn)P在上底面軌跡圓的半徑長(zhǎng),最后利用圓的面積公式可求出答案【詳解】如圖所示,設(shè)三棱錐P-ABC的外接球?yàn)榍騉,分別取AC、A1C1的中點(diǎn)O、O1,則點(diǎn)O在線段OO1上,由于正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,則ABC的外接圓的半徑為OA=2,設(shè)球O的半徑為R,則4R2=414,解得R=414.所以,OO=R2-OA2=34,則OO1=OO1-OO=2-34=54而點(diǎn)P在上底面A1B1C1D1所形成的軌跡是以O(shè)1為圓心的圓,由于OP=R=414,所以O(shè)1P=R2-OO12=1,因此,點(diǎn)P所構(gòu)成的圖形的面積為O1P2=.【點(diǎn)睛】本題考查三棱錐的外接球的相關(guān)問題
16、,根據(jù)立體幾何中的線段關(guān)系求動(dòng)點(diǎn)的軌跡,屬于中檔題.15【解析】化簡(jiǎn)函數(shù),求出在上的單調(diào)遞增區(qū)間,然后根據(jù)在和上均單調(diào)遞增,列出不等式求解即可【詳解】由知,當(dāng)時(shí),在和上單調(diào)遞增,在和上均單調(diào)遞增,的取值范圍為:故答案為:【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),關(guān)鍵是根據(jù)函數(shù)的單調(diào)性列出關(guān)于m的方程組,屬中檔題16.【解析】由A,B,C成等差數(shù)列得出B60,利用正弦定理得進(jìn)而得代入三角形的面積公式即可得出【詳解】A,B,C成等差數(shù)列,A+C2B,又A+B+C180,3B180,B60故由正弦定理 ,故 所以SABC,故答案為:【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),三角形的面積公式,考查正弦定理的
17、應(yīng)用,屬于基礎(chǔ)題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)證明見解析;(2)【解析】(1)由已知可證,即可證明結(jié)論;(2)根據(jù)已知可證平面,建立空間直角坐標(biāo)系,求出坐標(biāo),進(jìn)而求出平面和平面的法向量坐標(biāo),由空間向量的二面角公式,即可求解.【詳解】方法一:(1)依題意,且,四邊形是平行四邊形,平面,平面,平面.(2)平面,且為的中點(diǎn),平面且,平面,以為原點(diǎn),分別以為軸、軸、軸的正方向,建立如圖所示的空間直角坐標(biāo)系,則,設(shè)平面的法向量為,則,取,則.設(shè)平面的法向量為,則,取,則.,設(shè)二面角的平面角為,則,二面角的正弦值為.方法二:(1)證明:連接交于點(diǎn),因?yàn)樗倪呅螢槠叫?/p>
18、四邊形,所以為中點(diǎn),又因?yàn)樗倪呅螢榱庑危詾橹悬c(diǎn),在中,且,平面,平面,平面(2)略,同方法一.【點(diǎn)睛】本題主要考查線面平行的證明,考查空間向量法求面面角,意在考查直觀想象、邏輯推理與數(shù)學(xué)運(yùn)算的數(shù)學(xué)核心素養(yǎng),屬于中檔題.18()分布列見解析,;();()至少增加2人.【解析】()求出X的所有可能取值為9,12,15,18,24,求出概率,得到X的分布列,然后求解期望即可()當(dāng)P(aXb)取到最大值時(shí),求出a,b的可能值,然后求解P(aXb)的最大值即可()利用前兩問的結(jié)果,判斷至少增加2人【詳解】()X的取值為:9,12,15,18,24;,,X的分布列為:X912151824P故X的數(shù)學(xué)期
19、望;()當(dāng)P(aXb)取到最大值時(shí),a,b的值可能為:,或,或.經(jīng)計(jì)算,,所以P(aXb)的最大值為.()至少增加2人.【點(diǎn)睛】本題考查離散型隨機(jī)變量及其分布列,離散型隨機(jī)變量的期望與方差,屬于中等題.19()直線的直角坐標(biāo)方程為;曲線的普通方程為;().【解析】(I)利用參數(shù)方程、普通方程、極坐標(biāo)方程間的互化公式即可;(II)將直線參數(shù)方程代入拋物線的普通方程,可得,而根據(jù)直線參數(shù)方程的幾何意義,知,代入即可解決.【詳解】由可得直線的直角坐標(biāo)方程為由曲線的參數(shù)方程,消去參數(shù)可得曲線的普通方程為.易知點(diǎn)在直線上,直線的參數(shù)方程為(為參數(shù)).將直線的參數(shù)方程代入曲線的普通方程,并整理得.設(shè)是方程
20、的兩根,則有.【點(diǎn)睛】本題考查參數(shù)方程、普通方程、極坐標(biāo)方程間的互化,直線參數(shù)方程的幾何意義,是一道容易題.20(1),;(2)【解析】分析:(1)用代入法消參數(shù)可得直線的普通方程,由公式可化極坐標(biāo)方程為直角坐標(biāo)方程;(2)把直線的參數(shù)方程代入曲線的直角坐標(biāo)方程,其中參數(shù)的絕對(duì)值表示直線上對(duì)應(yīng)點(diǎn)到的距離,因此有,直接由韋達(dá)定理可得,注意到直線與圓相交,因此判別式0,這樣可得滿足的不等關(guān)系,由此可求得的取值范圍.詳解:(1)直線的參數(shù)方程為,普通方程為, 將代入圓的極坐標(biāo)方程中,可得圓的普通方程為, (2)解:直線的參數(shù)方程為代入圓的方程為 可得:(*),且由題意 ,, . 因?yàn)榉匠蹋?)有兩個(gè)不同的實(shí)根,所以,即, 又, 所以. 因?yàn)椋运?點(diǎn)睛:(1)參數(shù)方程化為普通方程,一般用消參數(shù)法,而消參法有兩種選擇:一是代入法,二是用公式;(2)極坐標(biāo)方程與直角坐標(biāo)方程互化一般利用公式;(3)過的直線的參數(shù)方程為(為參數(shù))中參數(shù)具有幾何意義:直線上任一點(diǎn)對(duì)應(yīng)參數(shù),則.21(1),(2)【解析】(1)利用互化公式把曲線C化成直角坐標(biāo)方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廈門市金雞亭中學(xué)2026年校園招聘?jìng)淇碱}庫(kù)完整答案詳解
- 養(yǎng)老院九防制度
- 公共交通信息化建設(shè)管理制度
- 會(huì)議決議執(zhí)行與監(jiān)督制度
- 2026年永康市科學(xué)技術(shù)局工作人員招聘?jìng)淇碱}庫(kù)參考答案詳解
- 2026年柳州市航鷹中學(xué)招聘語(yǔ)文教師招聘?jìng)淇碱}庫(kù)完整答案詳解
- 企業(yè)績(jī)效評(píng)估與獎(jiǎng)懲制度
- 上海七十邁數(shù)字科技2026校園招聘?jìng)淇碱}庫(kù)及答案詳解1套
- 2026年濮陽(yáng)市范縣第二小學(xué)音樂教師招聘?jìng)淇碱}庫(kù)及一套答案詳解
- 養(yǎng)老院入住老人突發(fā)疾病應(yīng)急處理制度
- 足療店消防安全制度
- 房屋自愿放棄繼承協(xié)議
- 智能安全帽解決方案-智能安全帽
- 2024年版煙霧病和煙霧綜合征診斷與治療專家共識(shí)(完整版)
- 研學(xué)旅行指導(dǎo)手冊(cè)
- 大學(xué)生社會(huì)支持評(píng)定量表附有答案
- 植入式靜脈給藥裝置(輸液港)-中華護(hù)理學(xué)會(huì)團(tuán)體標(biāo)準(zhǔn)2023
- GB/T 2988-2023高鋁磚
- 東風(fēng)7電路圖解析
- 數(shù)字填圖系統(tǒng)新版(RgMap2.0)操作手冊(cè)
- JJF 1069-2012 法定計(jì)量檢定機(jī)構(gòu)考核規(guī)范(培訓(xùn)講稿)
評(píng)論
0/150
提交評(píng)論