版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2021-2022高考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用05毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2答題前,認(rèn)真閱讀答題紙上的注意事項(xiàng),按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1函數(shù)的圖象大致為( )ABCD2已知表示兩條不同的直線(xiàn),表示兩個(gè)不同的平面,且則“”是“”的( )條件.A充分不必要B必要不充分C充要D既不充分也不必要3九章算術(shù)勾股章有一“引葭赴岸”問(wèn)題“今有餅池徑丈,葭生其中,出水兩尺,引葭赴岸,適與岸齊
2、,問(wèn)水深,葭各幾何?”,其意思是:有一個(gè)直徑為一丈的圓柱形水池,池中心生有一顆類(lèi)似蘆葦?shù)闹参铮冻鏊鎯沙?,若把它引向岸邊,正好與岸邊齊,問(wèn)水有多深,該植物有多高?其中一丈等于十尺,如圖若從該葭上隨機(jī)取一點(diǎn),則該點(diǎn)取自水下的概率為( )ABCD4的展開(kāi)式中,滿(mǎn)足的的系數(shù)之和為( )ABCD5已知實(shí)數(shù)、滿(mǎn)足不等式組,則的最大值為()ABCD6已知函數(shù),則,的大小關(guān)系為( )ABCD7若點(diǎn)x,y位于由曲線(xiàn)x=y-2+1與x=3圍成的封閉區(qū)域內(nèi)(包括邊界),則y+1x-2的取值范圍是( )A-3,1B-3,5C-,-35,+D-,-31,+8已知f(x)=是定義在R上的奇函數(shù),則不等式f(x-3)f
3、(9-x2)的解集為( )A(-2,6)B(-6,2)C(-4,3)D(-3,4)9執(zhí)行如圖所示的程序框圖,如果輸入,則輸出屬于( )ABCD10已知集合,集合,則()ABCD11若函數(shù)的圖象經(jīng)過(guò)點(diǎn),則函數(shù)圖象的一條對(duì)稱(chēng)軸的方程可以為( )ABCD12已知函數(shù),若總有恒成立.記的最小值為,則的最大值為( )A1BCD二、填空題:本題共4小題,每小題5分,共20分。13秦九韶算法是南宋時(shí)期數(shù)學(xué)家秦九韶提出的一種多項(xiàng)式簡(jiǎn)化算法,如圖所示的框圖給出了利用秦九韶算法求多項(xiàng)式值的一個(gè)實(shí)例,若輸入,的值分別為4,5,則輸出的值為_(kāi). 14已知是定義在上的偶函數(shù),其導(dǎo)函數(shù)為若時(shí),則不等式的解集是_15已知,
4、且,則的最小值為_(kāi)16已知函數(shù)恰好有3個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍為_(kāi)三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17(12分)設(shè)函數(shù),.(1)求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個(gè)零點(diǎn),().(i)求的取值范圍;(ii)求證:隨著的增大而增大.18(12分)的內(nèi)角,的對(duì)邊分別是,已知.(1)求角;(2)若,求的面積.19(12分)已知等比數(shù)列,其公比,且滿(mǎn)足,和的等差中項(xiàng)是1()求數(shù)列的通項(xiàng)公式;()若,是數(shù)列的前項(xiàng)和,求使成立的正整數(shù)的值20(12分)已知函數(shù),.(1)若對(duì)于任意實(shí)數(shù),恒成立,求實(shí)數(shù)的范圍;(2)當(dāng)時(shí),是否存在實(shí)數(shù),使曲線(xiàn):在點(diǎn)處的切線(xiàn)與軸垂直?若存在,求
5、出的值;若不存在,說(shuō)明理由.21(12分)已知集合,集合.(1)求集合;(2)若,求實(shí)數(shù)的取值范圍.22(10分)將棱長(zhǎng)為的正方體截去三棱錐后得到如圖所示幾何體,為的中點(diǎn).(1)求證:平面;(2)求二面角的正弦值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1A【解析】用偶函數(shù)的圖象關(guān)于軸對(duì)稱(chēng)排除,用排除,用排除.故只能選.【詳解】因?yàn)?,所以函數(shù)為偶函數(shù),圖象關(guān)于軸對(duì)稱(chēng),故可以排除;因?yàn)?故排除,因?yàn)橛蓤D象知,排除.故選:A【點(diǎn)睛】本題考查了根據(jù)函數(shù)的性質(zhì),辨析函數(shù)的圖像,排除法,屬于中檔題.2B【解析】根據(jù)充分必要條件的概念
6、進(jìn)行判斷.【詳解】對(duì)于充分性:若,則可以平行,相交,異面,故充分性不成立;若,則可得,必要性成立.故選:B【點(diǎn)睛】本題主要考查空間中線(xiàn)線(xiàn),線(xiàn)面,面面的位置關(guān)系,以及充要條件的判斷,考查學(xué)生綜合運(yùn)用知識(shí)的能力.解決充要條件判斷問(wèn)題,關(guān)鍵是要弄清楚誰(shuí)是條件,誰(shuí)是結(jié)論.3C【解析】由題意知:,設(shè),則,在中,列勾股方程可解得,然后由得出答案.【詳解】解:由題意知:,設(shè),則在中,列勾股方程得:,解得所以從該葭上隨機(jī)取一點(diǎn),則該點(diǎn)取自水下的概率為故選C.【點(diǎn)睛】本題考查了幾何概型中的長(zhǎng)度型,屬于基礎(chǔ)題.4B【解析】,有,三種情形,用中的系數(shù)乘以中的系數(shù),然后相加可得【詳解】當(dāng)時(shí),的展開(kāi)式中的系數(shù)為當(dāng),時(shí),
7、系數(shù)為;當(dāng),時(shí),系數(shù)為;當(dāng),時(shí),系數(shù)為;故滿(mǎn)足的的系數(shù)之和為故選:B【點(diǎn)睛】本題考查二項(xiàng)式定理,掌握二項(xiàng)式定理和多項(xiàng)式乘法是解題關(guān)鍵5A【解析】畫(huà)出不等式組所表示的平面區(qū)域,結(jié)合圖形確定目標(biāo)函數(shù)的最優(yōu)解,代入即可求解,得到答案【詳解】畫(huà)出不等式組所表示平面區(qū)域,如圖所示,由目標(biāo)函數(shù),化為直線(xiàn),當(dāng)直線(xiàn)過(guò)點(diǎn)A時(shí),此時(shí)直線(xiàn)在y軸上的截距最大,目標(biāo)函數(shù)取得最大值,又由,解得,所以目標(biāo)函數(shù)的最大值為,故選A【點(diǎn)睛】本題主要考查簡(jiǎn)單線(xiàn)性規(guī)劃求解目標(biāo)函數(shù)的最值問(wèn)題其中解答中正確畫(huà)出不等式組表示的可行域,利用“一畫(huà)、二移、三求”,確定目標(biāo)函數(shù)的最優(yōu)解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,及推理與計(jì)算能力,屬于
8、基礎(chǔ)題6B【解析】可判斷函數(shù)在上單調(diào)遞增,且,所以.【詳解】在上單調(diào)遞增,且,所以.故選:B【點(diǎn)睛】本題主要考查了函數(shù)單調(diào)性的判定,指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的性質(zhì),利用單調(diào)性比大小等知識(shí),考查了學(xué)生的運(yùn)算求解能力.7D【解析】畫(huà)出曲線(xiàn)x=y-2+1與x=3圍成的封閉區(qū)域,y+1x-2表示封閉區(qū)域內(nèi)的點(diǎn)(x,y)和定點(diǎn)(2,-1)連線(xiàn)的斜率,然后結(jié)合圖形求解可得所求范圍【詳解】畫(huà)出曲線(xiàn)x=y-2+1與x=3圍成的封閉區(qū)域,如圖陰影部分所示y+1x-2表示封閉區(qū)域內(nèi)的點(diǎn)(x,y)和定點(diǎn)P(2,-1)連線(xiàn)的斜率,設(shè)k=y+1x-2,結(jié)合圖形可得kkPA或kkPB,由題意得點(diǎn)A,B的坐標(biāo)分別為A(3,0),
9、B(1,2),kPA=13-2=1,kPB=2-(-1)1-2=-3,k1或k-3,y+1x-2的取值范圍為-,-31,+故選D【點(diǎn)睛】解答本題的關(guān)鍵有兩個(gè):一是根據(jù)數(shù)形結(jié)合的方法求解問(wèn)題,即把y+1x-2看作兩點(diǎn)間連線(xiàn)的斜率;二是要正確畫(huà)出兩曲線(xiàn)所圍成的封閉區(qū)域考查轉(zhuǎn)化能力和屬性結(jié)合的能力,屬于基礎(chǔ)題8C【解析】由奇函數(shù)的性質(zhì)可得,進(jìn)而可知在R上為增函數(shù),轉(zhuǎn)化條件得,解一元二次不等式即可得解.【詳解】因?yàn)槭嵌x在R上的奇函數(shù),所以,即,解得,即,易知在R上為增函數(shù).又,所以,解得.故選:C.【點(diǎn)睛】本題考查了函數(shù)單調(diào)性和奇偶性的應(yīng)用,考查了一元二次不等式的解法,屬于中檔題.9B【解析】由題意
10、,框圖的作用是求分段函數(shù)的值域,求解即得解.【詳解】由題意可知,框圖的作用是求分段函數(shù)的值域,當(dāng);當(dāng)綜上:.故選:B【點(diǎn)睛】本題考查了條件分支的程序框圖,考查了學(xué)生邏輯推理,分類(lèi)討論,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.10D【解析】可求出集合,然后進(jìn)行并集的運(yùn)算即可【詳解】解:,;故選【點(diǎn)睛】考查描述法、區(qū)間的定義,對(duì)數(shù)函數(shù)的單調(diào)性,以及并集的運(yùn)算11B【解析】由點(diǎn)求得的值,化簡(jiǎn)解析式,根據(jù)三角函數(shù)對(duì)稱(chēng)軸的求法,求得的對(duì)稱(chēng)軸,由此確定正確選項(xiàng).【詳解】由題可知.所以令,得令,得故選:B【點(diǎn)睛】本小題主要考查根據(jù)三角函數(shù)圖象上點(diǎn)的坐標(biāo)求參數(shù),考查三角恒等變換,考查三角函數(shù)對(duì)稱(chēng)軸的求法,屬于中檔題.12
11、C【解析】根據(jù)總有恒成立可構(gòu)造函數(shù),求導(dǎo)后分情況討論的最大值可得最大值最大值,即.根據(jù)題意化簡(jiǎn)可得,求得,再換元求導(dǎo)分析最大值即可.【詳解】由題, 總有即恒成立.設(shè),則的最大值小于等于0.又,若則,在上單調(diào)遞增, 無(wú)最大值.若,則當(dāng)時(shí),在上單調(diào)遞減, 當(dāng)時(shí),在上單調(diào)遞增.故在處取得最大值.故,化簡(jiǎn)得.故,令,可令,故,當(dāng)時(shí), ,在遞減;當(dāng)時(shí), ,在遞增.故在處取得極大值,為.故的最大值為.故選:C【點(diǎn)睛】本題主要考查了根據(jù)導(dǎo)數(shù)求解函數(shù)的最值問(wèn)題,需要根據(jù)題意分析導(dǎo)數(shù)中參數(shù)的范圍,再分析函數(shù)的最值,進(jìn)而求導(dǎo)構(gòu)造函數(shù)求解的最大值.屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13105
12、5【解析】模擬執(zhí)行程序框圖中的程序,即可求得結(jié)果.【詳解】模擬執(zhí)行程序如下:,滿(mǎn)足,滿(mǎn)足,滿(mǎn)足,滿(mǎn)足,不滿(mǎn)足,輸出.故答案為:1055.【點(diǎn)睛】本題考查程序框圖的模擬執(zhí)行,屬基礎(chǔ)題.14【解析】構(gòu)造,先利用定義判斷的奇偶性,再利用導(dǎo)數(shù)判斷其單調(diào)性,轉(zhuǎn)化為,結(jié)合奇偶性,單調(diào)性求解不等式即可.【詳解】令,則是上的偶函數(shù),則在上遞減,于是在上遞增由得,即,于是,則,解得故答案為:【點(diǎn)睛】本題考查了利用函數(shù)的奇偶性、單調(diào)性解不等式,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于較難題.15【解析】由,先將變形為,運(yùn)用基本不等式可得最小值,再求的最小值,運(yùn)用函數(shù)單調(diào)性即可得到所求值.【詳解】解:因?yàn)?/p>
13、,且,所以 因?yàn)?,所?,當(dāng)且僅當(dāng)時(shí),取等號(hào),所以 令,則,令,則,所以函數(shù)在上單調(diào)遞增,所以所以則所求最小值為故答案為: 【點(diǎn)睛】此題考查基本不等式的運(yùn)用:求最值,注意變形和滿(mǎn)足的條件:一正二定三相等,考查利用單調(diào)性求最值,考查化簡(jiǎn)和運(yùn)算能力,屬于中檔題.16【解析】恰好有3個(gè)不同的零點(diǎn)恰有三個(gè)根,然后轉(zhuǎn)化成求函數(shù)值域即可.【詳解】解:恰好有3個(gè)不同的零點(diǎn)恰有三個(gè)根,令,在遞增;,遞減,遞增,時(shí),在有一個(gè)零點(diǎn),在有2個(gè)零點(diǎn);故答案為:.【點(diǎn)睛】已知函數(shù)的零點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍是重點(diǎn)也是難點(diǎn),這類(lèi)題一般用分離參數(shù)的方法,中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。1
14、7(1)見(jiàn)解析;(2)(i)(ii)證明見(jiàn)解析【解析】(1)求出導(dǎo)函數(shù),分類(lèi)討論即可求解;(2)(i)結(jié)合(1)的單調(diào)性分析函數(shù)有兩個(gè)零點(diǎn)求解參數(shù)取值范圍;(ii)設(shè),通過(guò)轉(zhuǎn)化,討論函數(shù)的單調(diào)性得證.【詳解】(1)因?yàn)?,所以?dāng)時(shí),在上恒成立,所以在上單調(diào)遞增,當(dāng)時(shí),的解集為,的解集為,所以的單調(diào)增區(qū)間為,的單調(diào)減區(qū)間為;(2)(i)由(1)可知,當(dāng)時(shí),在上單調(diào)遞增,至多一個(gè)零點(diǎn),不符題意,當(dāng)時(shí),因?yàn)橛袃蓚€(gè)零點(diǎn),所以,解得,因?yàn)?,且,所以存在,使得,又因?yàn)?,設(shè),則,所以單調(diào)遞增,所以,即,因?yàn)椋源嬖?,使得,綜上,;(ii)因?yàn)?,所以,因?yàn)?,所以,設(shè),則,所以,解得,所以,所以,設(shè),則,設(shè),則
15、,所以單調(diào)遞增,所以,所以,即,所以單調(diào)遞增,即隨著的增大而增大,所以隨著的增大而增大,命題得證.【點(diǎn)睛】此題考查利用導(dǎo)函數(shù)處理函數(shù)的單調(diào)性,根據(jù)函數(shù)的零點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍,通過(guò)等價(jià)轉(zhuǎn)化證明與零點(diǎn)相關(guān)的命題.18(1)(2)【解析】(1)利用余弦定理可求,從而得到的值.(2)利用誘導(dǎo)公式和正弦定理化簡(jiǎn)題設(shè)中的邊角關(guān)系可得,得到值后利用面積公式可求.【詳解】(1)由,得.所以由余弦定理,得.又因?yàn)椋?(2)由,得.由正弦定理,得,因?yàn)?,所?又因,所以.所以的面積.【點(diǎn)睛】在解三角形中,如果題設(shè)條件是關(guān)于邊的二次形式,我們可以利用余弦定理化簡(jiǎn)該條件,如果題設(shè)條件是關(guān)于邊的齊次式或是關(guān)于內(nèi)
16、角正弦的齊次式,那么我們可以利用正弦定理化簡(jiǎn)該條件,如果題設(shè)條件是邊和角的混合關(guān)系式,那么我們也可把這種關(guān)系式轉(zhuǎn)化為角的關(guān)系式或邊的關(guān)系式.19 () .() .【解析】()由等差數(shù)列中項(xiàng)性質(zhì)和等比數(shù)列的通項(xiàng)公式,解方程可得首項(xiàng)和公比,可得所求通項(xiàng)公式;(),由數(shù)列的錯(cuò)位相減法求和可得,解方程可得所求值【詳解】()等比數(shù)列,其公比,且滿(mǎn)足,和的等差中項(xiàng)是即有,解得: ()由()知:則相減可得:化簡(jiǎn)可得:,即為解得:【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,考查數(shù)列的錯(cuò)位相減法求和,以及方程思想和運(yùn)算能力,屬于中檔題20(1);(2)不存在實(shí)數(shù),使曲線(xiàn)在點(diǎn)處的切線(xiàn)與軸垂直.【解析】(1
17、)分類(lèi)時(shí),恒成立,時(shí),分離參數(shù)為,引入新函數(shù),利用導(dǎo)數(shù)求得函數(shù)最值即可;(2),導(dǎo)出導(dǎo)函數(shù),問(wèn)題轉(zhuǎn)化為在上有解再用導(dǎo)數(shù)研究的性質(zhì)可得【詳解】解:(1)因?yàn)楫?dāng)時(shí),恒成立,所以,若,為任意實(shí)數(shù),恒成立.若,恒成立,即當(dāng)時(shí),設(shè),當(dāng)時(shí),則在上單調(diào)遞增,當(dāng)時(shí),則在上單調(diào)遞減,所以當(dāng)時(shí),取得最大值.,所以,要使時(shí),恒成立,的取值范圍為.(2)由題意,曲線(xiàn)為:.令,所以,設(shè),則,當(dāng)時(shí),故在上為增函數(shù),因此在區(qū)間上的最小值,所以,當(dāng)時(shí),所以,曲線(xiàn)在點(diǎn)處的切線(xiàn)與軸垂直等價(jià)于方程在上有實(shí)數(shù)解.而,即方程無(wú)實(shí)數(shù)解.故不存在實(shí)數(shù),使曲線(xiàn)在點(diǎn)處的切線(xiàn)與軸垂直.【點(diǎn)睛】本題考查不等式恒成立,考查用導(dǎo)數(shù)的幾何意義,由導(dǎo)數(shù)幾何把問(wèn)題進(jìn)行轉(zhuǎn)化是解題關(guān)鍵本題屬于困難題21(1);(2).【解析】(1)求出函數(shù)的定義域,即可求出結(jié)論;(2)化簡(jiǎn)集合,根據(jù)確定集合的端點(diǎn)位置,建立的不等量關(guān)系,即可求解.【詳解】(1)由,即得或,所以集合或.(2)集合,由得或,解得或,所以實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查集合的運(yùn)算,集合間的關(guān)系求參數(shù),考查函數(shù)的定義域,屬于基礎(chǔ)題.22(1)見(jiàn)解析;(2).【解析】(1)取的中點(diǎn),連接、,連接,證明出四邊形為平行四邊形,可得出,然后利用線(xiàn)面平行的判定定理可證得結(jié)論;(2)以點(diǎn)為坐
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 同城寵物活動(dòng)策劃方案(3篇)
- 濕地淺灘施工方案(3篇)
- 春節(jié)融水活動(dòng)方案策劃(3篇)
- 強(qiáng)電組織施工方案(3篇)
- 企業(yè)員工紀(jì)律規(guī)范制度及執(zhí)行標(biāo)準(zhǔn)
- 玉器展覽活動(dòng)策劃方案(3篇)
- 甘肅應(yīng)急預(yù)案撰寫(xiě)(3篇)
- 電池更換施工方案(3篇)
- 盜匪警應(yīng)急預(yù)案(3篇)
- 砼基座施工方案(3篇)
- GB/T 6003.2-2024試驗(yàn)篩技術(shù)要求和檢驗(yàn)第2部分:金屬穿孔板試驗(yàn)篩
- 離婚協(xié)議標(biāo)準(zhǔn)版(有兩小孩)
- 浙江省臺(tái)州市路橋區(qū)2023-2024學(xué)年七年級(jí)上學(xué)期1月期末考試語(yǔ)文試題(含答案)
- 假體隆胸后查房課件
- 2023年互聯(lián)網(wǎng)新興設(shè)計(jì)人才白皮書(shū)
- DB52-T 785-2023 長(zhǎng)順綠殼蛋雞
- c語(yǔ)言知識(shí)點(diǎn)思維導(dǎo)圖
- 關(guān)于地方儲(chǔ)備糧輪換業(yè)務(wù)會(huì)計(jì)核算處理辦法的探討
- GB/T 29319-2012光伏發(fā)電系統(tǒng)接入配電網(wǎng)技術(shù)規(guī)定
- GB/T 1773-2008片狀銀粉
- GB/T 12007.4-1989環(huán)氧樹(shù)脂粘度測(cè)定方法
評(píng)論
0/150
提交評(píng)論