版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、一、選擇題1.我國(guó)數(shù)學(xué)史上有一部堪與歐幾里得幾何本來(lái)媲美的書(shū),這就是向來(lái)被尊為算經(jīng)之首的九章算術(shù),此中卷第五商功有一道關(guān)于圓柱體的體積試題:今有圓堡,周四丈八尺,高一丈一尺,問(wèn)積幾何?其意思是:含有圓柱形的土筑小城堡,底面周長(zhǎng)是4丈8尺,高1丈1尺,問(wèn)它的體積是多少?若取3,估量小城堡的體積為()A1998立方尺B2012立方尺C2112立方尺D2324立方尺【答案】C【分析】設(shè)圓柱體的底面半徑為R,則由題意,得23R48,得R8,所以小城堡的體積VS底h382112112(立方尺),應(yīng)選C2.2018年全國(guó)大聯(lián)考3(課標(biāo)卷)】以以下圖,網(wǎng)格紙上每個(gè)小格都是邊長(zhǎng)為1的正方形,粗線畫(huà)出的是一個(gè)幾
2、何體的三視圖,記該幾何體的各棱長(zhǎng)度構(gòu)成的會(huì)集為A,則()A3AB3AC22AD23A【答案】C【分析】由三視圖知該幾何體的直觀圖為圖中所示的三棱錐A-BCD,AB=AC=BC=22,AD=DC=5,BD=1,應(yīng)選CABDC3.2018全國(guó)大聯(lián)考4(山東卷)】某三棱錐的三視圖以以下圖,則該三棱錐的外接球的體積是()A4B8C55D5336【答案】C.4.【2018全國(guó)大聯(lián)考2(山東卷)】如圖為某幾何體的三視圖,則其體積為()A.2B.2444C.3334D.3【答案】D【分析】由三視圖可知,該幾何體是一個(gè)半圓柱(所在圓柱OO1)與四棱錐的組合體,其中四棱錐的底面ABCD為圓柱的軸截面,極點(diǎn)P在半
3、圓柱所在圓柱的底面圓上(如圖所示),且P在AB上的射影為底面的圓心O.由三視圖數(shù)據(jù)可得,半圓柱所在圓柱的底面半徑r1,高h(yuǎn)2,故其體積V11r2h1122;22四棱錐的底面ABCD為邊長(zhǎng)為2的正方形,PO底面ABCD,且POr1.故其體積V21S正方形ABCDPO12214.3343故該幾何體的體積VVV.1235.【2018押題卷1(課標(biāo)1卷)】某幾何體的三視圖以以下圖,則該幾何體的體積為()A1616B1632C8163233D833【答案】Dasinx12cos2xdx6.【2018全國(guó)大聯(lián)考3(課標(biāo)I卷)】已知02,如圖,若三棱錐PABC的最長(zhǎng)的棱PAa,且PBBA,PCAC,則此三棱
4、錐的外接球的體積為()A.164D.B.C.333【答案】B【分析】asinx12cos2xdxsinxcosxdx(cosxsinx)2,因?yàn)?200PBBA,PCAC,則三棱錐的外接球的直徑為PAa2,因其余接球的體積是413=4.334(課標(biāo)卷)】在三棱錐ABCD中,ABC與BCD都是邊長(zhǎng)為7.【2018全國(guó)大聯(lián)考的正三角形,平面ABC平面BCD,則該三棱錐的外接球的體積為()A.515B.C.601560D.2015【答案】D8.【2018押題卷1(課標(biāo)1卷)】四棱錐PABCD的底面ABCD為正方形,PA底面ABCD,AB2,若該四棱錐的全部極點(diǎn)都在體積為243同一球面上,則PA()1
5、6A3B7C23D922【答案】B【分析】連接AC,BD交于點(diǎn)E,取PC的中點(diǎn)O,連接OE,則OEPPA,所以O(shè)E底面ABCD,則O到四棱錐的全部極點(diǎn)的距離相等,即O球心,均為11PA2AC21PA24128)3243PC228,所以由球的體積可得(PA,23216解得PA7,應(yīng)選B29.【2018全國(guó)大聯(lián)考1(課標(biāo)I卷)】直三棱柱ABCA1B1C1中,底面是正三角形,三棱柱的高為3,若P是A1B1C1中心,且三棱柱的體積為9,則PA與平面ABC所成的角大4小是()A.B.C.23D.643【答案】C【分析】由題意可設(shè)底面三角形的邊長(zhǎng)為a,過(guò)點(diǎn)P作平面ABC的垂線,垂足為O,則點(diǎn)O為底面ABC
6、的中心,故PAO即為PA與平面ABC所成的角,因?yàn)镺A23aA13a,而323OP3,又因?yàn)槿庵捏w積為9,由棱柱體積公式得4329,解得a3,所以AV3a434tanPAOPO33,得,故PA與平面ABC所成的角大小是AO3a31PB1COB,故正確3答案為C.10.【2018押題卷1(課標(biāo)2卷)】在正方體ABCD-A1B1C1D1中,M是線段AC11的中點(diǎn),若四周體M-ABD的外接球體積為36p,則正方體棱長(zhǎng)為()A2B3C4D5【答案】C【分析】設(shè)正方體棱長(zhǎng)為a,因?yàn)镈ABD是等腰直角三角形,且MA=MB=MD,設(shè)O是BD中點(diǎn),連接OM,則OM面ABD,所以球心O必在OM上,可求得外接
7、球半徑為3,可得32=(a-3)2+(2a)2,解得a=4,故正方體棱長(zhǎng)為4211【.2018押題卷3(課標(biāo)1卷)】已知H是球O的直徑AB上一點(diǎn),AH:HB1:2,AB平面,H為垂足,截球O所得截面的面積為,則球O的體積為()A.9B.392434C.D.8【答案】C【分析】如圖,易知點(diǎn)H為截面圓的圓心,取截面圓上一點(diǎn)M,連接HM,OM.設(shè)球O的半徑為R,則由AH:HB1:2,得AH2R,3所以O(shè)H1R.3因?yàn)榻孛婷娣e為HM2,所以HM1.在RtHMO中,OM2OH2HM2,所以R21R2HM21R21,99所以R32.4所以V球4(32)392.348二、填空題12.【2018全國(guó)大聯(lián)考3(
8、課標(biāo)卷)】在正四棱錐VABCD內(nèi)有一半球,其底面與正四棱錐的底面重合,且與正四棱錐的四個(gè)側(cè)面相切,若半球的半徑為2,則當(dāng)正四棱錐的體積最小時(shí),其高等于_【答案】23【分析】以以下圖,設(shè)極點(diǎn)V在底面ABCD的射影為點(diǎn)O,并設(shè)正四棱錐的高VO的長(zhǎng)為x,底面正方形的邊長(zhǎng)為2a,過(guò)點(diǎn)O作平行于AB的直線交BC于點(diǎn)F,作OMVF于點(diǎn)M,則OM=2,VFx2a2.在RtVOF中,有ax2x2a2,得a24x2.所以正四x24棱錐VABCD的體積為V(x)1216x3(x2),16x2(x212).4ax24V(x)3(x24)233x令V(x)0,得x23,當(dāng)x(2,23)時(shí),V(x)0;當(dāng)x(23,)時(shí)
9、,V(x)0,故當(dāng)x23時(shí),正四棱錐的體積最小VDxC2MFOAB2a三、解答題13【.2018押題卷2(課標(biāo)I卷)】在三棱錐PACD中,ADCD,ADCD=2,PAD為正三角形,點(diǎn)F是棱PD的中點(diǎn),且平面PAD平面ACD()求證:()求二面角AF平面PCD;PACF的平面角的余弦值.【分析】()因ADPA,F是PD的中點(diǎn),所以AFPD,又因平面PAD平面ACD,ADCD,所以CD平面PAD,因AF平面PAD,所以CDAF.因PDCDD,所以AF平面PCD.平面CAF的法向量6分uuurACm2x22y20m(x,y,z),uuur3x23z2,取x=1,2222AFm220y21,z23,m
10、=(1,1,3),10分所以cosm,nm?n111=3105,所以二面角PACF的平面角的余|m|n|75353弦值為3105.12分3514.【2018押題卷2(課標(biāo)卷)】在四棱柱ABCDA1B1C1D1中,底面ABCD是菱形,且ABAA1,A1ABA1AD60.(1)求證:平面A1BD平面A1AC;(2)若BD2A1D2,求平面A1BD與平面B1BD所成角的大小.(2)由A1BA1D及BD2A1D2知A1BA1D,又由A1DAD,A1BAB,BDBD,得A1BDABD,故BAD90,于是AOA1O1BD2AA1,22從而AOA1O,結(jié)合A1OBD,得A1O底面ABCD,如圖,建立空間直角
11、坐標(biāo)系,則A(1,0,0),B(0,1,0),D(0,1,0),A1(0,0,1),C(-1,0,0),uuurBB1AA1(1,0,1),DB=(0,2,0),設(shè)平面B1BD的一個(gè)法向量為n(x,y,z),nBD0y0,令x1,得n(1,0,1),由得nBB10 xz0平面A1BD的一個(gè)法向量為CA(2,0,0),設(shè)平面A1BD與平面B1BD所成角為,則cosnCA245.(12|n|CA|,故2分)15.【2018押題卷2(山東卷)】棱錐PABCD的三視圖以以下圖,(I)求證:平面PBD平面PAC(II)在線段PD上能否存在一點(diǎn)Q,使CQ與平面PBD所成的角的正弦值為26,若存9在,指出點(diǎn)
12、Q的地址,若不存在,說(shuō)明原由.【分析】()由三視圖可知在RtBAD中,AD=2,BD=22,AB=2,ABCD為正方形,所以BDAC.2分PA平面ABCD,BD平面ABCD,BDPA.又PAAC=A,BD平面PAC.BD平面PBD,平面PBD平面PAC6分16.【2018押題卷1(山東卷)】在以以下圖的幾何體中,四邊形ABCD為矩形,直線AF平面ABCD,EF/AB,AD2,ABAF2EF1,點(diǎn)P在棱DF上.(1)求證:ADBF;(2)若P是DF的中點(diǎn),求異面直線BE與CP所成角的余弦值;(3)若FP1FD,求二面角DAPC的余弦值.3【分析】(1)證明:因?yàn)锳F平面ABCD,所以AFAB,又
13、ADAB,所以AD平面ABEF,又BF平面ABEF,故ADBF.3分(2)因?yàn)锽AF90,所以AFAB,又由(1)得ADAF,ADAB,所以以A為坐標(biāo)原點(diǎn),AB,AD,AF所在直線分別為x,y,z軸,建立以以下圖空間直角坐標(biāo)系A(chǔ)xyz,B(1,0,0),E(1,0,1),P(0,1,1),C(1,2,0).4分22所以BE(1,0,1),CP(1,1,1),所以cosBE,CPBECP45,22|BE|CP|15所以異面直BE與CP所成角的余弦45.8分151(3)因AB平面ADF,所以平面ADF的一個(gè)法向量n1(1,0,0).由FPFD知P3FD的三均分點(diǎn)且此22)22P(0,.在平面APC
14、中,AP(0,),AC(1,2,0).3333所以平面APC的一個(gè)法向量n(2,1,1).10分2所以|cosn1,n2|n1n2|6,又因二面角DAPC的大小角,所以二|n1|n2|3面角的余弦6分12.317.【2018全國(guó)大考1(卷)】已知四棱PABCD中,PA平面ABCD,底面ABCD是菱形,BAD1200,角AC與BD交于點(diǎn)O,MOC中點(diǎn)()求:BDPM;()若二面角OPMD的正切26,求PA的AD【分析】()因?yàn)镻A平面ABCD,所以PABD又ABCD為菱形,所以ACBD,又因?yàn)镻AIACA,所以BD平面PAC,又因?yàn)镻M面PAC,所以BDPM5分()如圖,以A為原點(diǎn),AD,AP所
15、在直線為y軸,z軸建立空間直角坐標(biāo)系,設(shè)PAa,AD1,則P(0,0,a),D(0,1,0)333,0)31,,M(,O(,0)8844uuuruuuur(33,3,uuur3,3,0)從而PD(0,1,a),PMa),OD(8844因?yàn)锽D平面PAC,所以平面PMO的一個(gè)法向量為uuur(3,3,0)OD44ruuurruuuurryaz0設(shè)平面PMD的法向量為n(x,y,z),由PDn,PMn得33x3yaz088取x5a,ya,zr(5a,a,1)1,即n310分333uuurr,則二面角OPMD大小與tan26設(shè)OD與n的夾角為相等從而,得15a3a13PA3cos,cos124,解得
16、a12分53525,故AD4a21422718.【2018全國(guó)大聯(lián)考1(山東卷)】如圖,矩形ABCD和梯形BEFC所在平面相互垂直,BECF且BECF,BCF=,AD=3,EF=2.2(1)求證:AE平面DCF;(2)若BE31,且AB,當(dāng)取何值時(shí),直線AE與BF所成角的大小為600?BE【分析】(1)過(guò)E作EGBC交FC于G,連接DG,因?yàn)锽ECF,所以四邊形BCGE是平行四邊形,因此EGBCAD,-2分EG=BC=AD,所以四邊形ADGE也是平行四邊形,于是AEDG.又AE平面DCF,DG平面DCF,故AE平面DCF-5分FzGFGECECDyBDxBAA2)過(guò)E作GECF交CF于G,由已
17、知EGBCAD,且EG=BC=AD,所以EG=AD3,又EF=2,所以GF=1因?yàn)樗倪呅蜛BCD是矩形,所以DCBC因?yàn)锽CF=,所以FCBC,又平面AC平面BF,平面AC平面BF=BC,于是FC2平面AC,所以FCCD.分別以CB、CD、CF為軸建立空間直角坐標(biāo)系-7分由AB,得AB=(31).BE所以A(3,(31),0),B(3,0,0),E(3,0,3),F(xiàn)(0,0,3),1AE(13)31)uuur3,0,3).所以=(0,BF(-9分uuuruuurAEBF依題意有cos60uuuuruuur,|AE|BF|即331,解得1.6(31)212-11分故當(dāng)1時(shí),直線AE與BF所成角的
18、大小為600.-12分19.【2018全國(guó)大聯(lián)考2(課標(biāo)I卷)】如圖,在直三棱柱ABCA1B1C1(側(cè)棱垂直于底面的棱柱為直棱柱)中,BCCC11,AC2,ABC=90(1)求證:平面ABC1平面A1B1C;(2)設(shè)D為AC的中點(diǎn),求平面ABC1與平面C1D所成銳角的余弦值【分析】(1)ABC=90,ABBC又由條件知BB1平面ABC,AB平面ABC,BB1AB2分又BBIBC1B,AB平面BBCC,11ABBC1由BCCC11,知四邊形BBCC為正方形,11BC1BC14分又ABIBC1=B,則B1C平面ABC1又B1C平面A1B1C,平面ABC1平面A1B1C6分20.【2018全國(guó)大聯(lián)考2(山東卷)】如圖,四棱錐PABCD中,底面ABCD是平行四邊形,且PA平面ABCD,PAABAD2,BAD60o.()證明:平面PBD平面PAC;()求平面APD與平面PBC所成二面角(銳角)的余弦值.PDCAB()AC與BD的交點(diǎn)O,取PC的中點(diǎn)Q,OQ.APC中
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 飛機(jī)油箱防爆技術(shù)
- 2026貴州康體旅投發(fā)展有限公司實(shí)習(xí)生招聘2人參考考試題庫(kù)及答案解析
- 2026吉林省吉林市永吉縣公益性崗位人員招聘66人備考考試題庫(kù)及答案解析
- 銀行股份公司管理制度(3篇)
- 石嘴山年會(huì)活動(dòng)策劃方案(3篇)
- 學(xué)生協(xié)商活動(dòng)策劃方案(3篇)
- 老客引流活動(dòng)策劃方案(3篇)
- 公司內(nèi)部pos管理制度(3篇)
- 2026北京協(xié)和醫(yī)院婦科內(nèi)分泌與生殖中心合同制科研助理招聘?jìng)淇伎荚囋囶}及答案解析
- 2026江蘇蘇州大學(xué)納米科學(xué)技術(shù)學(xué)院課程助教招聘(2025-2026-2學(xué)期)考試備考題庫(kù)及答案解析
- (正式版)DB41∕T 2987-2025 《在線教育課程資源制作規(guī)范》
- 2025至2030年中國(guó)碲化鎘行業(yè)競(jìng)爭(zhēng)格局及市場(chǎng)發(fā)展?jié)摿︻A(yù)測(cè)報(bào)告
- 2026黑龍江省生態(tài)環(huán)境廳所屬事業(yè)單位招聘57人筆試備考試題及答案解析
- (2025年)(完整版)建筑工地三級(jí)安全教育試題(附答案)
- 2026新人教版七年級(jí)下冊(cè)英語(yǔ)知識(shí)點(diǎn)(生詞+詞組+語(yǔ)法)
- 名師工作室工作考核自評(píng)報(bào)告
- 工會(huì)法知識(shí)試題及答案
- 擒敵術(shù)課件底圖
- GB/T 38082-2025生物降解塑料購(gòu)物袋
- 宴會(huì)工作流程培訓(xùn)
- 黑山峽工程施工方案
評(píng)論
0/150
提交評(píng)論