2021-2022學年廣東省東莞市第四高級中學高三二診模擬考試數(shù)學試卷含解析_第1頁
2021-2022學年廣東省東莞市第四高級中學高三二診模擬考試數(shù)學試卷含解析_第2頁
2021-2022學年廣東省東莞市第四高級中學高三二診模擬考試數(shù)學試卷含解析_第3頁
2021-2022學年廣東省東莞市第四高級中學高三二診模擬考試數(shù)學試卷含解析_第4頁
2021-2022學年廣東省東莞市第四高級中學高三二診模擬考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022高考數(shù)學模擬試卷考生請注意:1答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知為銳角,且,則等于( )ABCD2已知函數(shù)且的圖象恒過定點,則函數(shù)圖象以點為對稱中心的充要條件是( )ABCD3已知,復數(shù),且為實數(shù),則( )ABC3D-34已知雙曲線的左、右焦點

2、分別為,點P是C的右支上一點,連接與y軸交于點M,若(O為坐標原點),則雙曲線C的漸近線方程為( )ABCD5若(是虛數(shù)單位),則的值為( )A3B5CD6某幾何體的三視圖如圖所示,則該幾何體的體積為()ABCD7設集合,則( )ABCD8函數(shù)(, , )的部分圖象如圖所示,則的值分別為( )A2,0B2, C2, D2, 9世紀產(chǎn)生了著名的“”猜想:任給一個正整數(shù),如果是偶數(shù),就將它減半;如果是奇數(shù),則將它乘加,不斷重復這樣的運算,經(jīng)過有限步后,一定可以得到.如圖是驗證“”猜想的一個程序框圖,若輸入正整數(shù)的值為,則輸出的的值是( )ABCD10設函數(shù)恰有兩個極值點,則實數(shù)的取值范圍是( )A

3、BCD11已知銳角滿足則( )ABCD12已知,若,則等于( )A3B4C5D6二、填空題:本題共4小題,每小題5分,共20分。13如圖,半球內(nèi)有一內(nèi)接正四棱錐,該四棱錐的體積為,則該半球的體積為_. 14已知二面角l為60,在其內(nèi)部取點A,在半平面,內(nèi)分別取點B,C若點A到棱l的距離為1,則ABC的周長的最小值為_15已知是拋物線的焦點,過作直線與相交于兩點,且在第一象限,若,則直線的斜率是_16已知數(shù)列中,為其前項和,則_,_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)如圖,三棱錐中,點,分別為,的中點,且平面平面求證:平面;若,求證:平面平面.18(12

4、分)已知函數(shù)(1)若在處取得極值,求的值;(2)求在區(qū)間上的最小值;(3)在(1)的條件下,若,求證:當時,恒有成立19(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).點在曲線上,點滿足.(1)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,求動點的軌跡的極坐標方程;(2)點,分別是曲線上第一象限,第二象限上兩點,且滿足,求的值.20(12分)網(wǎng)絡看病就是國內(nèi)或者國外的單個人、多個人或者單位通過國際互聯(lián)網(wǎng)或者其他局域網(wǎng)對自我、他人或者某種生物的生理疾病或者機器故障進行查找詢問、診斷治療、檢查修復的一種新興的看病方式.因此,實地看病與網(wǎng)絡看病便成為現(xiàn)在人們的兩種看病方式,最近某信息機構調(diào)研

5、了患者對網(wǎng)絡看病,實地看病的滿意程度,在每種看病方式的患者中各隨機抽取15名,將他們分成兩組,每組15人,分別對網(wǎng)絡看病,實地看病兩種方式進行滿意度測評,根據(jù)患者的評分(滿分100分)繪制了如圖所示的莖葉圖:(1)根據(jù)莖葉圖判斷患者對于網(wǎng)絡看病、實地看病那種方式的滿意度更高?并說明理由;(2)若將大于等于80分視為“滿意”,根據(jù)莖葉圖填寫下面的列聯(lián)表:滿意不滿意總計網(wǎng)絡看病實地看病總計并根據(jù)列聯(lián)表判斷能否有的把握認為患者看病滿意度與看病方式有關?(3)從網(wǎng)絡看病的評價“滿意”的人中隨機抽取2人,求這2人平分都低于90分的概率.附,其中.0.150.100.050.0250.0100.0050.

6、0012.0722.7063.8415.0246.6357.87910.82821(12分)已知與有兩個不同的交點,其橫坐標分別為().(1)求實數(shù)的取值范圍;(2)求證:.22(10分)若正數(shù)滿足,求的最小值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】由可得,再利用計算即可.【詳解】因為,所以,所以.故選:C.【點睛】本題考查二倍角公式的應用,考查學生對三角函數(shù)式化簡求值公式的靈活運用的能力,屬于基礎題.2A【解析】由題可得出的坐標為,再利用點對稱的性質(zhì),即可求出和.【詳解】根據(jù)題意,所以點的坐標為,又 ,所以.

7、故選:A.【點睛】本題考查指數(shù)函數(shù)過定點問題和函數(shù)對稱性的應用,屬于基礎題.3B【解析】把和 代入再由復數(shù)代數(shù)形式的乘法運算化簡,利用虛部為0求得m值【詳解】因為為實數(shù),所以,解得.【點睛】本題考查復數(shù)的概念,考查運算求解能力.4C【解析】利用三角形與相似得,結合雙曲線的定義求得的關系,從而求得雙曲線的漸近線方程?!驹斀狻吭O,由,與相似,所以,即,又因為,所以,所以,即,所以雙曲線C的漸近線方程為.故選:C.【點睛】本題考查雙曲線幾何性質(zhì)、漸近線方程求解,考查數(shù)形結合思想,考查邏輯推理能力和運算求解能力。5D【解析】直接利用復數(shù)的模的求法的運算法則求解即可.【詳解】(是虛數(shù)單位)可得解得本題正

8、確選項:【點睛】本題考查復數(shù)的模的運算法則的應用,復數(shù)的模的求法,考查計算能力.6A【解析】利用已知條件畫出幾何體的直觀圖,然后求解幾何體的體積【詳解】幾何體的三視圖的直觀圖如圖所示,則該幾何體的體積為:故選:【點睛】本題考查三視圖求解幾何體的體積,判斷幾何體的形狀是解題的關鍵7D【解析】利用一元二次不等式的解法和集合的交運算求解即可.【詳解】由題意知,集合,由集合的交運算可得,.故選:D【點睛】本題考查一元二次不等式的解法和集合的交運算;考查運算求解能力;屬于基礎題.8D【解析】由題意結合函數(shù)的圖象,求出周期,根據(jù)周期公式求出,求出,根據(jù)函數(shù)的圖象過點,求出,即可求得答案【詳解】由函數(shù)圖象可

9、知:,函數(shù)的圖象過點,則故選【點睛】本題主要考查的是的圖像的運用,在解答此類題目時一定要挖掘圖像中的條件,計算三角函數(shù)的周期、最值,代入已知點坐標求出結果9C【解析】列出循環(huán)的每一步,可得出輸出的的值.【詳解】,輸入,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)不成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,成立,跳出循環(huán),輸出的值為.故選:C.【點睛】本題考查利用程序框圖計算輸出結果,考查計算能力,屬于基礎題.10C【解析】恰有兩個極值點,則恰有兩個不同的解,求出可確定是它的

10、一個解,另一個解由方程確定,令通過導數(shù)判斷函數(shù)值域求出方程有一個不是1的解時t應滿足的條件.【詳解】由題意知函數(shù)的定義域為,.因為恰有兩個極值點,所以恰有兩個不同的解,顯然是它的一個解,另一個解由方程確定,且這個解不等于1.令,則,所以函數(shù)在上單調(diào)遞增,從而,且.所以,當且時,恰有兩個極值點,即實數(shù)的取值范圍是.故選:C【點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性與極值,函數(shù)與方程的應用,屬于中檔題.11C【解析】利用代入計算即可.【詳解】由已知,因為銳角,所以,即.故選:C.【點睛】本題考查二倍角的正弦、余弦公式的應用,考查學生的運算能力,是一道基礎題.12C【解析】先求出,再由,利用向量數(shù)量積

11、等于0,從而求得.【詳解】由題可知,因為,所以有,得,故選:C.【點睛】該題考查的是有關向量的問題,涉及到的知識點有向量的減法坐標運算公式,向量垂直的坐標表示,屬于基礎題目.二、填空題:本題共4小題,每小題5分,共20分。13【解析】由題意可知半球的半徑與正四棱錐的高相等,可得正四棱錐的棱與半徑的關系,進而可寫出半球的半徑與四棱錐體積的關系,進而求得結果.【詳解】設所給半球的半徑為,則四棱錐的高,則,由四棱錐的體積,半球的體積為:.【方法點睛】涉及球與棱柱、棱錐的切、接問題時,一般過球心及多面體中的特殊點(一般為接、切點)或線作截面,把空間問題轉化為平面問題,再利用平面幾何知識尋找?guī)缀误w中元素

12、間的關系,或只畫內(nèi)切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關系,列方程(組)求解.14【解析】作A關于平面和的對稱點M,N,交和與D,E,連接MN,AM,AN,DE,根據(jù)對稱性三角形ADC的周長為AB+AC+BCMB+BC+CN,當四點共線時長度最短,結合對稱性和余弦定理求解.【詳解】作A關于平面和的對稱點M,N,交和與D,E,連接MN,AM,AN,DE,根據(jù)對稱性三角形ABC的周長為AB+AC+BCMB+BC+CN,當M,B,C,N共線時,周長最小為MN設平面ADE交l于,O,連接OD,OE,顯然ODl,OEl,DOE60,MOA+AON240,OA1

13、,MON120,且OMONOA1,根據(jù)余弦定理,故MN21+1211cos1203,故MN故答案為:【點睛】此題考查求空間三角形邊長的最值,關鍵在于根據(jù)幾何性質(zhì)找出對稱關系,結合解三角形知識求解.15【解析】作出準線,過作準線的垂線,利用拋物線的定義把拋物線點到焦點的距離轉化為點到準線的距離,利用平面幾何知識計算出直線的斜率【詳解】設是準線,過作于,過作于,過作于,如圖,則,直線斜率為故答案為:【點睛】本題考查拋物線的焦點弦問題,解題關鍵是利用拋物線的定義,把拋物線上點到焦點距離轉化為該點到準線的距離,用平面幾何方法求解168 (寫為也得分) 【解析】由,得,.當時,所以,所以的奇數(shù)項是以1為

14、首項,以2為公比的等比數(shù)列;其偶數(shù)項是以2為首項,以2為公比的等比數(shù)列.則,.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17證明見解析;證明見解析.【解析】利用線面平行的判定定理求證即可;為中點,為中點,可得,可知,故為直角三角形,利用面面垂直的判定定理求證即可.【詳解】解: 證明:為中點,為中點,又平面,平面,平面;證明:為中點,為中點,又,則,故為直角三角形,平面平面,平面平面,平面,平面,又平面,平面平面.【點睛】本題考查線面平行和面面垂直的判定定理的應用,屬于基礎題.18(1)2;(2);(3)證明見解析【解析】(1)先求出函數(shù)的定義域和導數(shù),由已知函數(shù)在處取得極值

15、,得到,即可求解的值;(2)由(1)得,定義域為,分,和三種情況討論,分別求得函數(shù)的最小值,即可得到結論;(3)由,得到,把,只需證,構造新函數(shù),利用導數(shù)求得函數(shù)的單調(diào)性與最值,即可求解.【詳解】(1)由,定義域為,則,因為函數(shù)在處取得極值,所以,即,解得,經(jīng)檢驗,滿足題意,所以.(2)由(1)得,定義域為,當時,有,在區(qū)間上單調(diào)遞增,最小值為,當時,由得,且,當時,單調(diào)遞減;當時,單調(diào)遞增;所以在區(qū)間上單調(diào)遞增,最小值為,當時,則,當時,單調(diào)遞減;當時,單調(diào)遞增;所以在處取得最小值,綜上可得:當時,在區(qū)間上的最小值為1,當時,在區(qū)間上的最小值為.(3)由得,當時,則,欲證,只需證,即證,即,

16、設,則,當時,在區(qū)間上單調(diào)遞增,當時,即,故, 即當時,恒有成立.【點睛】本題主要考查導數(shù)在函數(shù)中的綜合應用,以及不等式的證明,著重考查了轉化與化歸思想、分類討論、及邏輯推理能力與計算能力,對于此類問題,通常要構造新函數(shù),利用導數(shù)研究函數(shù)的單調(diào)性,求出最值,進而得出相應的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構造新函數(shù),直接把問題轉化為函數(shù)的最值問題19(1)();(2)【解析】(1)由已知,曲線的參數(shù)方程消去t后,要注意x的范圍,再利用普通方程與極坐標方程的互化公式運算即可;(2)設,由(1)可得,相加即可得到證明.【詳解】(1),由題可知:,:().(2)因為,設,則,.【點睛

17、】本題考查參數(shù)方程、普通方程、極坐標方程間的互化,考查學生的計算能力,是一道容易題.20(1)實地看病的滿意度更高,理由見解析;(2)列聯(lián)表見解析,有;(3).【解析】(1)對實地看病滿意度更高,可以從莖葉圖四個方面選一個回答即可;(2)先完成列聯(lián)表,再由獨立性檢驗得有的把握認為患者看病滿意度與看病方式有關;(3)利用古典概型的概率公式求得這2人平分都低于90分的概率.【詳解】(1)對實地看病滿意度更高,理由如下:(i)由莖葉圖可知:在網(wǎng)絡看病中,有的患者滿意度評分低于80分;在實地看病中,有的患者評分高于80分,因此患者對實地看病滿意度更高.(ii)由莖葉圖可知:網(wǎng)絡看病滿意度評分的中位數(shù)為

18、73分,實地看病評分的中位數(shù)為87分,因此患者對實地看病滿意度更高.(iii)由莖葉圖可知:網(wǎng)絡看病的滿意度評分平均分低于80分;實地看病的滿意度的評分平均分高于80分,因此患者對實地看病滿意度更高.(iV)由莖葉圖可知:網(wǎng)絡看病的滿意度評分在莖6上的最多,關于莖7大致呈對稱分布;實地看病的評分分布在莖8,上的最多,關于莖8大致呈對稱分布,又兩種看病方式打分的分布區(qū)間相同,故可以認為實地看病評分比網(wǎng)絡看病打分更高,因此實地看病的滿意度更高.以上給出了4種理由,考生答出其中任意一一種或其他合理理由均可得分.(2)參加網(wǎng)絡看病滿意度調(diào)查的15名患者中共有5名對網(wǎng)絡看病滿意,10名對網(wǎng)絡看病不滿意;參加實地看病滿意度調(diào)查的15名患者中共有10名對實地看病滿意,5名

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論