付費下載
下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、小波域圖像復原 彭思龍 中科院自動化所 國家專用集成電路設計工程技術研究中心Image Restoration Image Restoration References:H.C. Andrews and B.R. Hunt , Digital Image Restoration , Englewood Cliffs, NJ:Prentice-Hall, 1977鄒謀炎 , 反卷積和信號復原, 國防工業(yè)出版社, 2001.3Mark R. Banham and A.K. Katsaggelos, Digital Image Restoration, IEEE Trans. Image Proc.
2、 , March 1997 R.L.Lagendijk,J.Biemond. Iterative identification and restoration of images. Kluwer Academic Publishers,1991P.Mller, B.Vidakovic. Bayesian inference in wavelet-based models. 1999 Springer-Verlag New York, IncImage RestorationDegradation modelIll-posed problemRegularizationBayes framewo
3、rk for image restorationImage Restoration MethodsFrequency domain methods Spatial domain methodsWavelet domain methodsImage RestorationDegradation modelDegradation model (Continous form)h+f (u,v)g (u, v) (u, v): Point Spread Function, PSF or Blur Function : Pointwise nonlinear operation: Additive no
4、ise: True image: Observed image Linear vs. Non-linearMany types of degradation can be approximated by linear, space invariant processesNon-linear and space variant models are more accurateDifficult to solveUnsolvable Image RestorationDegradation modelHere, We only consider the linear, space invarian
5、t PSF ! Image RestorationDegradation modelDegradation model (Discrete form)Size:f : N1N2h : M1M2g : (N1M1-1)(N2+M2-1)Image RestorationDegradation modelMatrix-Vector representation of image restoration problem: Stack f, g, row-by-row or column-by-column to form vector representations of these 2-D var
6、iables theoretic analysis more easily Degradation model (Discrete form)Size:f : N1N21H : (N1M1-1)(N2+M2-1)N1N2 g : (N1M1-1)(N2+M2-1)1H is a block toeplitz matrixImage RestorationDegradation modelIll-posed problemRegularizationBayes framework for image restorationImage Restoration MethodsFrequency do
7、main methods Spatial domain methodsWavelet domain methodsImage Restoration Ill-posed ProblemInverse filtering solutionH is ill-conditioned which makes image restoration problem an ill-posed problemSolution is not stable: not continuely depend on the observed data gRestoration Problem: g, h and stati
8、stical properties of noise are Known, the task is to estimate the true image f Another perspective Least square solutionImage Restoration Ill-posed ProblemSingular Value position of H :U is MM orthornormal matrixV is NN orthornormal matrixAnother perspective Least square solution (Cont.)Image Restor
9、ation Ill-posed ProblemBy simple computation:It can be seen that if H have small singular values , then a small change in g or H will cause large change in the solution. Noise-free Sinusoidal noise Noise-freeExact H Exact H not exact HImage Restoration Ill-posed Problem Examples:Image RestorationDeg
10、radation modelIll-posed problemRegularizationBayes framework for image restorationImage Restoration MethodsWavelet domain methodsImage RestorationRegularization Generally speaking, any regularization method tries to analyze a related well-posed problem whose solution approximates the original ill-po
11、sed problem. The well-posedness is achieved by implementing one or more of the following basic ideas:restriction of the data; change of the solution space and/or topologies; modification of the operator itself; the concept of regularization operators; andwell-posed stochastic extensions of ill-posed
12、 problems. For g = Hf + h, the regularization method constructs the solution asu(f, g) describes how the real image data is related to the degraded data. In other words, this term models the characteristic of the imaging system. bv(f) is the regularization term with the regularization operator v ope
13、rating on the original image f, and the regularization parameter b used to tune up the weight of the regularization term. By adding the regularization term, the original ill-posed problem turns into a well-posed one, that is, the insertion of the regularization operator puts some constraints on what
14、 f might be, which makes the solution more stable.Image RestorationRegularization Solution FormulationImage RestorationRegularization A case studyConsider By SVD position of H,we get The introduction of reduced the affection of small singular values of H on the solution. Image RestorationDegradation
15、 modelIll-posed problemRegularizationBayes framework for image restorationImage Restoration MethodsWavelet domain methods MAP (maximize a-posteriori probability)Formulate solution from statistical point of view: MAP approach tries to find an estimate of image f that maximizes the a-posteriori probab
16、ility p(f|g) asAccording to Bayes rule, P(f) is the a-priori probability of the unknown image f. We call it the prior modelP(g) is the probability of g which is a constant when g is givenp(g|f) is the conditional probability density function (pdf) of g. We call it the sensor model, which is a descri
17、ption of the noisy or stochastic processes that relate the original unknown image f to the measured image g.Image RestorationBayes Framework MAP - DerivationBayes interpretation of regularization theory Noise termPrior termImage RestorationBayes Framework Noise TermAssume Gaussian noise of zero mean
18、, the standard deviation is MAP Derivation(Cont.)Image RestorationBayes Framework Prior TermThe prior knowledge of the original image refers to the a-priori belief that the state of a pixel is entirely determined by the states of its neighboring pixels. Specifically, it is expected that pixels close
19、 to each other tend to have the same or similar brightness values.A Markov Random Field (MRF) is a probabilistic process in which all interaction is local. It is an appropriate model to represent the local property in the image. However, MRF is difficult to estimate. There is an equivalence between
20、Gibbs distribution and MRF.Gibbs distribution allows the modeling of local structure through energies which describes the interactions of pixels within each clique of the neighborhood. MAP Derivation(Cont.)Image RestorationBayes FrameworkImage RestorationWavelet domain methodsWavelet domain represen
21、tation of image restoration problemImage RestorationWavelet domain methodsA practical wavelet domain restoration algorithm (M. Belge, 1999) position Strategy Image RestorationWavelet domain methodsA practical wavelet domain restoration algorithm (M. Belge, 1999)Prior Model: GGD: is a scale parameter
22、 similar to the standard deviation of a gaussian densityImage RestorationWavelet domain methodsA practical wavelet domain restoration algorithm (M. Belge, 1999)The cost functionalImage RestorationWavelet domain methodsA practical wavelet domain restoration algorithm (M. Belge, 1999)Taking the gradie
23、nt of the cost function we getA fixed point iteration to solve for f*We can solve this equation with conjugate gradient algorithm Image RestorationWavelet domain methodsA practical wavelet domain restoration algorithm (M. Belge, 1999)Practical implementation of the algorithmProblem: The size of is t
24、oo large to be implemented on nowadays computer, and cannot be approximated by circulate matrix !Solution: Transform the iteration problem back to spatial domainNow : the problem can be solved by convolution, wavelet position and reconstruction only. We need not generate the large scale matrix reall
25、y!Image RestorationWavelet domain methodsComparisionImage RestorationWavelet domain methodsOther wavelet domain methodsWavelet-based Regularized Deconvolution, WaRD Wavelet-Vaguelette position Multiscale kalman filtering Multiscale maximum entropy deconvolutionWavelet domain gaussian scale mixtureHi
26、dden Markov Tree Model based restorationLocal gaussian model based restoratoinWavelet domain EM algorithmImage RestorationWavelet domain methodsFurther reading (1):M.R. Banham and A.K. Katsaggelos, Spatially-Adaptive Wavelet-Based Multiscale Image Restoration , IEEE Trans. Image Proc. Vol. 5 , April
27、 1996 , 619634Matthew S. Crouse, Robert D. Nowak and Richard G. Baraniuk, Wavelet-Based Statistical Signal Processing Using Hidden Markov Models, IEEE Trans. Signal Proc. Vol. 46 , April 1998 , 886902J. Portilla and E.P. Simoncelli,Image restoration using Gaussian scale mixtures in the wavelet domain, Proc. 10th IEEE Intl Conf on Image Processing, Barcelona, Spain. Sep 2003J. Portilla, V. Strela, M. Wainwright and E.P. Simoncelli, Image denoising using scale mixtures o
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 財務審核審批崗位分工制度
- 落實落細制度
- 2025高二英語期末模擬卷01(考試版A4)(人教版)含答案
- 2026福建浦盛產(chǎn)業(yè)發(fā)展集團有限公司浦城縣浦恒供應鏈有限公司職業(yè)經(jīng)理人招聘備考考試題庫附答案解析
- 2026貴州省省、市兩級機關遴選公務員357人備考考試試題附答案解析
- 2026浦發(fā)銀行成都分行支行籌備中心社會招聘參考考試試題附答案解析
- 2026年中國科學院合肥腫瘤醫(yī)院血液透析中心醫(yī)護人員招聘7名備考考試試題附答案解析
- 2026廣東湛江市吳川市公安局招聘警務輔助人員32人(第一次)參考考試題庫附答案解析
- 2026年中國科學院合肥腫瘤醫(yī)院血液透析中心醫(yī)護人員招聘7名參考考試試題附答案解析
- 2026華南理工大學電力學院科研助理招聘備考考試試題附答案解析
- 富士康工廠設備管理制度
- JG/T 382-2012傳遞窗
- 基于深度學習的高精度鏜床參數(shù)優(yōu)化-洞察闡釋
- 供應商評估準入、管理制度
- 深圳市科學中學2023-2024學年高一(上)期末物理試卷
- 中國地理:中國地理空間定位(課件)
- 10kV小區(qū)供配電設計、采購、施工EPC投標技術方案技術標
- 新人教版七年級上冊初中數(shù)學全冊教材習題課件
- 2024-2025學年湖北省咸寧市高二生物學上冊期末達標檢測試卷及答案
- JTG F40-2004 公路瀝青路面施工技術規(guī)范
- 三片飲料罐培訓
評論
0/150
提交評論