生物分子網(wǎng)絡(luò)-基本概念_第1頁
生物分子網(wǎng)絡(luò)-基本概念_第2頁
生物分子網(wǎng)絡(luò)-基本概念_第3頁
生物分子網(wǎng)絡(luò)-基本概念_第4頁
生物分子網(wǎng)絡(luò)-基本概念_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、生物分子網(wǎng)絡(luò)基本概念網(wǎng)絡(luò)的表示方法頂點(A B C D E F)和頂點之間的邊集(AB BC BD CE DE EF)組成的圖: (a) 節(jié)點和邊組成的圖;(b) 鏈表;(c) 鄰接矩陣 Distance最短距離 The Distance between two vertices u and v in a graph G is the length of a shortest path between them. When u and v are identical, their distance is defined to be 0. When u and v are unreachable

2、 from each other, their distance is defined to be infinity.“small world” property of short-pathsPeterJaneSarahRalph社會網(wǎng)絡(luò):6度分離WWW: 16次點擊分離Small wordOne of the phenomenons of real networks is that the average distance through the network from one vertex to another is small compared to the network size.

3、Average Path Length (APL)Small wordAverage distances l for various real networks with size indicated as n介數(shù)(Betweenness)介數(shù)(Betweenness)介數(shù)分為頂點介數(shù)和邊介數(shù)兩種 Let st = ts to be the number of shortest paths between two nodes s and t (ss = 1).Let st (v) be the number of shortest paths between two nodes s and t

4、 that goes through node v.Then, the betweenness centrality Cb(v) of any vertex v can be computed as:Clustering CoefficientClustering coefficients take values in the range and it measures the tendency of the network to form highly interconnected regions called Clusters.鄰居節(jié)點連接個數(shù)和所有可能連接個數(shù)的比值where d is

5、the degree of v and t is the number of vs trianglesCalculating clustering coefficient of a vertex.vertex v above has d = 6, e = 3 and therefore:Most of My friends know each other!Network modulesER(random) graphsErds和Rnyi in the 1950s and 1960sDegree distribution of a random graph, and an example of

6、such a graph.A random graphFor each pair of vertices (u, v) in the graph: Connect the two vertices with an edge by chance p and do not connect the two vertices by chance 1 p.平均節(jié)點度為: d = (N 1)p. 聚類系數(shù)為:C = p.Random graphsRandom graphs are a very useful model to compare with the real networks behaviort

7、he ER model differs from real networks in two crucial ways: small network clustering Poisson degree distribution.小世界模型(WS模型)Duncan J. Watts and Steven H. Strogatz :“Collective dynamics of small-world networks”規(guī)則網(wǎng)絡(luò)回顧一下小世界的由來,可以發(fā)現(xiàn)它隱含著兩層含義:點與點距離短,聚類系數(shù)大(朋友與朋友相互認識)兩層含義是矛盾的模型的提出WS模型:規(guī)則與隨機之間The Scale-free

8、model by Barabsi and AlbertPower-law degree distribution in log-log representation.Power-law degree distribution is characterized by a small number of highly connected hubs. Due to the existence of the central hubs, Scale Free networks are highly connected as compared to a random network.層次網(wǎng)絡(luò)Many highly connected small

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論