廣東省惠州市惠州一中學2023學年數(shù)學九上期末綜合測試試題含解析_第1頁
廣東省惠州市惠州一中學2023學年數(shù)學九上期末綜合測試試題含解析_第2頁
廣東省惠州市惠州一中學2023學年數(shù)學九上期末綜合測試試題含解析_第3頁
廣東省惠州市惠州一中學2023學年數(shù)學九上期末綜合測試試題含解析_第4頁
廣東省惠州市惠州一中學2023學年數(shù)學九上期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、2023學年九上數(shù)學期末模擬試卷注意事項:1答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2答題時請按要求用筆。3請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1計算 的結果是( )ABCD92邊長分別為6,8,10的三角形的內切圓半徑與外接圓半徑的比為( )A1:5B4:5C2:10D2:53某河堤橫斷面如圖所示,堤高米,迎水坡的坡比是(坡比

2、是坡面的鉛直高度與水平寬度之比),則的長是( )A米B20米C米D30米4甲、乙兩名同學在一次用頻率去估計概率的實驗中,統(tǒng)計了某一結果出現(xiàn)的頻率繪出的統(tǒng)計圖如圖,則符合這一結果的實驗可能是()A擲一枚正六面體的骰子,出現(xiàn)1點的概率B拋一枚硬幣,出現(xiàn)正面的概率C從一個裝有2個白球和1個紅球的袋子中任取一球,取到紅球的概率D任意寫一個整數(shù),它能被2整除的概率5下列長度的三條線段能組成三角形的是()A1,2,3B2,3,4C3,4,7D5,2,86判斷一元二次方程是否有實數(shù)解,計算的值是( )ABCD7如圖,OA交O于點B,AD切O于點D,點C在O上若A40,則C為()A20B25C30D358分別

3、寫有數(shù)字0,1,2,1,3的五張卡片,除數(shù)字不同外其他均相同,從中任抽一張,那么抽到負數(shù)的概率是( )ABCD9在ABC與DEF中,如果B=50,那么E的度數(shù)是( )A50;B60;C70;D8010如圖,已知矩形的面積是,它的對角線與雙曲線圖象交于點,且,則值是( )ABCD二、填空題(每小題3分,共24分)11廊橋是我國古老的文化遺產(chǎn)如圖,是某座拋物線型的廊橋示意圖,已知拋物線的函數(shù)表達式為,為保護廊橋的安全,在該拋物線上距水面AB高為8米的點E,F(xiàn)處要安裝兩盞警示燈,則這兩盞燈的水平距離EF是_米精確到1米12 “永定樓”,作為門頭溝區(qū)的地標性建筑,因其坐落在永定河畔而得名為測得其高度,

4、低空無人機在A處,測得樓頂端B的仰角為30,樓底端C的俯角為45,此時低空無人機到地面的垂直距離AE為23 米,那么永定樓的高度BC是_米(結果保留根號) 13如圖,在正方體的展開圖形中,要將1,2,3填入剩下的三個空白處(彼此不同),則正方體三組相對的兩個面中數(shù)字互為相反數(shù)的概率是_14閱讀對話,解答問題:分別用、表示小冬從小麗、小兵袋子中抽出的卡片上標有的數(shù)字,則在(,)的所有取值中使關于的一元二次方程有實數(shù)根的概率為_15如圖,在ABC中,BC=12,BC上的高AH=8,矩形DEFG的邊EF在邊BC上,頂點D、G分別在邊AB、AC上設DE,矩形DEFG的面積為,那么關于的函數(shù)關系式是_

5、(不需寫出x的取值范圍)16某一建筑物的樓頂是“人”字型,并鋪上紅瓦裝飾現(xiàn)知道樓頂?shù)钠露瘸^0.5時,瓦片會滑落下來請你根據(jù)圖中數(shù)據(jù)判斷這一樓頂鋪設的瓦片是否會滑落下來?_(填“會”或“不會”)17漢代數(shù)學家趙爽在注解周髀算經(jīng)時給出的“趙爽弦圖”是我國古代數(shù)學的瑰寶.如圖所示的弦圖中,四個直角三角形都是全等的,它們的兩直角邊之比均為,現(xiàn)隨機向該圖形內擲一枚小針,則針尖落在陰影區(qū)域的概率為_.18如圖,從一塊直徑是的圓形鐵皮上剪出一個圓心角是的扇形,如果將剪下來的扇形圍成一個圓錐,那么圓錐的底面圓的半徑為_三、解答題(共66分)19(10分)一個布袋中有紅、黃、綠三種顏色的球各一個,從中先摸出一

6、個球,記錄下它的顏色,將它放回布袋,攪勻,再摸出一個球,記錄下它的顏色(1)試用樹形圖或列表法中的一種列舉出這兩次摸出球的顏色所有可能的結果;(2)求兩次摸出球中至少有一個綠球的概率20(6分)如圖,在平面直角坐標系中,已知ABC的三個頂點的坐標分別是A(4,1),B(1,2),C(2,4).(1)將ABC向右平移4個單位后得到A1B1C1,請畫出A1B1C1,并寫出點B1的坐標;(2)A2B2C2和A1B1C1關于原點O中心對稱,請畫出A2B2C2,并寫出點C2的坐標;(3)連接點A和點B2,點B和點A2,得到四邊形AB2A2B,試判斷四邊形AB2A2B的形狀(無須說明理由)21(6分)國家

7、教育部提出“每天鍛煉一小時,健康工作五十年,幸福生活一輩子”.萬州區(qū)某中學對九年級部分學生進行問卷調查“你最喜歡的鍛煉項目是什么?”,規(guī)定從“打球”,“跑步”,“游泳”,“跳繩”,“其他”五個選項中選擇自己最喜歡的項目,且只能選擇一個項目,并將調查結果繪制成如下兩幅不完整的統(tǒng)計圖.最喜歡的鍛煉項目人數(shù)打球120跑步游泳跳繩30其他(1)這次問卷調查的學生總人數(shù)為 ,人數(shù) ;(2)扇形統(tǒng)計圖中, ,“其他”對應的扇形的圓心角的度數(shù)為 度;(3)若該年級有1200名學生,估計喜歡“跳繩”項目的學生大約有多少人?22(8分)如圖,已知是的一條弦,請用尺規(guī)作圖法找出的中點(保留作圖痕跡,不寫作法)23

8、(8分)如圖,為的直徑,切于點,交的延長線于點,且.(1)求的度數(shù).(2)若的半徑為2,求的長.24(8分)如圖,雙曲線經(jīng)過點P(2,1),且與直線ykx4(k0)有兩個不同的交點.(1)求m的值.(2)求k的取值范圍.25(10分)已知反比例函數(shù)的圖象經(jīng)過點(2,2)(I)求此反比例函數(shù)的解析式;(II)當y2時,求x的取值范圍26(10分)某商店經(jīng)銷一種學生用雙肩包,已知這種雙肩包的成本價為每個30元,市場調查發(fā)現(xiàn),這種雙肩包每天的銷售量(個)與y銷售單價x(元)有如下關系:,設這種雙肩包每天的銷售利潤為w元(1)這種雙肩包銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?(2)

9、如果物價部門規(guī)定這種雙肩包的銷售單價不高于42元,該商店銷售這種雙肩包每天要獲得200元的銷售利潤,銷售單價應定為多少元?參考答案一、選擇題(每小題3分,共30分)1、D【分析】根據(jù)負整數(shù)指數(shù)冪的計算方法:,為正整數(shù)),求出的結果是多少即可【詳解】解:,計算的結果是1故選:D【點睛】此題主要考查了負整數(shù)指數(shù)冪:,為正整數(shù)),要熟練掌握,解答此題的關鍵是要明確:(1)計算負整數(shù)指數(shù)冪時,一定要根據(jù)負整數(shù)指數(shù)冪的意義計算;(2)當?shù)讛?shù)是分數(shù)時,只要把分子、分母顛倒,負指數(shù)就可變?yōu)檎笖?shù)2、D【分析】由面積法求內切圓半徑,通過直角三角形外接圓半徑為斜邊一半可求外接圓半徑, 則問題可求【詳解】解:62

10、+82=102 ,此三角形為直角三角形,直角三角形外心在斜邊中點上,外接圓半徑為5,設該三角形內接圓半徑為r,由面積法68(6+8+10)r,解得r=2,三角形的內切圓半徑與外接圓半徑的比為2:5 ,故選D【點睛】本題主要考查了直角三角形內切圓和外接圓半徑的有關性質和計算方法,解決本題的關鍵是要熟練掌握面積計算方法.3、A【分析】由堤高米,迎水坡AB的坡比,根據(jù)坡度的定義,即可求得AC的長【詳解】迎水坡AB的坡比,堤高米,(米).故選A.【點睛】本題考查了解直角三角形的應用-坡度坡角問題,掌握坡比的概念是解題的關鍵4、C【解析】解:A擲一枚正六面體的骰子,出現(xiàn)1點的概率為,故此選項錯誤;B擲一

11、枚硬幣,出現(xiàn)正面朝上的概率為,故此選項錯誤;C從一裝有2個白球和1個紅球的袋子中任取一球,取到紅球的概率是:0.33;故此選項正確;D任意寫出一個整數(shù),能被2整除的概率為,故此選項錯誤故選C5、B【解析】根據(jù)三角形三邊關系定理得出:如果較短兩條線段的和大于最長的線段,則三條線段可以構成三角形,由此判定即可【詳解】A1+2=3,不能構成三角形,故此選項錯誤;B2+34,能構成三角形,故此選項正確;C3+4=7,不能構成三角形,故此選項錯誤;D5+28,不能構成三角形,故此選項錯誤故選:B【點睛】本題考查了三角形的三邊關系,在運用三角形三邊關系判定三條線段能否構成三角形時并不一定要列出三個不等式,

12、只要兩條較短的線段長度之和大于第三條線段的長度即可判定這三條線段能構成一個三角形6、B【解析】首先將一元二次方程化為一般式,然后直接計算判別式即可.【詳解】一元二次方程可化為:故答案為B.【點睛】此題主要考查一元二次方程的根的判別式的求解,熟練掌握,即可解題.7、B【分析】根據(jù)切線的性質得到ODA90,根據(jù)直角三角形的性質求出DOA,根據(jù)圓周角定理計算即可【詳解】解:切于點故選:B【點睛】本題考查了切線的性質:圓心與切點的連線垂直切線、圓周角定理以及直角三角形兩銳角互余的性質,結合圖形認真推導即可得解8、B【解析】試題分析:根據(jù)概率的求法,找準兩點:全部等可能情況的總數(shù);符合條件的情況數(shù)目;二

13、者的比值就是其發(fā)生的概率. 因此,從0,1,2,1,3中任抽一張,那么抽到負數(shù)的概率是.故選B.考點:概率.9、C【分析】根據(jù)已知可以確定;根據(jù)對應角相等的性質即可求得的大小,即可解題【詳解】解:,與是對應角,與是對應角,故故選:C【點睛】本題考查了相似三角形的判定及性質,本題中得出和是對應角是解題的關鍵10、D【分析】過點D作DEAB交AO于點E,通過平行線分線段成比例求出的長度,從而確定點D 的坐標,代入到解析式中得到k的值,最后利用矩形的面積即可得出答案.【詳解】過點D作DEAB交AO于點EDEAB 點D在上 故選D【點睛】本題主要考查平行線分線段成比例及反比例函數(shù),掌握平行線分線段成比

14、例是解題的關鍵.二、填空題(每小題3分,共24分)11、 【解析】由于兩盞E、F距離水面都是8m,因而兩盞景觀燈之間的水平距離就是直線y=8與拋物線兩交點的橫坐標差的絕對值故有,即, , 所以兩盞警示燈之間的水平距離為:12、【分析】過點A作BC的垂線,垂足為D,則DAC=45,BAD=30,進一步推出AD=CD=AE=米,再根據(jù)tanBAD= = ,從而求出BD的值,再由BC=BD+CD即可得到結果.【詳解】解:如圖所示,過點A作ADBC于D,則DAC=45,BAD=30,ADBC, DAC=45,AD=CD=AE=米,在RtABD中,tanBAD= =,BD=AD = =23(米)BC=B

15、D+CD= (米)故答案為.【點睛】本題主要考查了解直角三角形的應用,解題的關鍵是從題目中整理出直角三角形并正確的利用邊角關系求解13、【解析】根據(jù)隨機事件概率大小的求法,找準兩點:符合條件的情況數(shù)目;全部情況的總數(shù)二者的比值就是其發(fā)生的概率的大小【詳解】解:將-1、-2、-3分別填入三個空,共有321=6種情況,其中三組相對的兩個面中數(shù)字和均為零的情況只有一種,故其概率為.故答案為.【點睛】本題考查概率的求法與運用一般方法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率.14、【解析】試題分析:用列表法易得(a,b)所有情況,看使關于x的一元二次方

16、程x3-ax+3b=3有實數(shù)根的情況占總情況的多少即可試題解析:(a,b)對應的表格為:方程x3-ax+3b=3有實數(shù)根,=a3-8b3使a3-8b3的(a,b)有(3,3),(4,3),(4,3),p(3)=考點:3列表法與樹狀圖法;3根的判別式15、;【分析】根據(jù)題意和三角形相似,可以用含的代數(shù)式表示出,然后根據(jù)矩形面積公式,即可得到與的函數(shù)關系式【詳解】解:四邊形是矩形,上的高,矩形的面積為,得,故答案為:【點睛】本題考查根據(jù)實際問題列二次函數(shù)關系式、相似三角形的判定與性質,解答本題的關鍵是明確題意,利用數(shù)形結合的思想解答16、不會【分析】根據(jù)斜坡的坡度的定義,求出坡度,即可得到答案【詳

17、解】ABC是等腰三角形,AB=AC=13m,AHBC,CH=BC=12m,AH=m,樓頂?shù)钠露?,這一樓頂鋪設的瓦片不會滑落下來故答案是:不會【點睛】本題主要考查斜坡坡度的定義,掌握坡度的定義,是解題的關鍵17、【解析】分析:設勾為2k,則股為3k,弦為k,由此求出大正方形面積和陰影區(qū)域面積,由此能求出針尖落在陰影區(qū)域的概率詳解:設勾為2k,則股為3k,弦為k,大正方形面積S=kk=13k2,中間小正方形的面積S=(32)k(32)k=k2,故陰影部分的面積為:13 k2-k2=12 k2針尖落在陰影區(qū)域的概率為:故答案為點睛:此題主要考查了幾何概率問題,用到的知識點為:概率=相應的面積與總面

18、積之比18、【分析】根據(jù)題意可知扇形ABC圍成圓錐后的底面周長就是弧BC的弧長,再根據(jù)弧長公式和圓周長公式來求解.【詳解】解:作于點,連結OA、BC, BAC=90BC是直徑,OB=OC, 圓錐的底面圓的半徑故答案為:【點睛】本題考查了扇形圍成圓錐形,圓錐的底面圓的周長就是原來扇形的弧長,找到它們的關系是解題的關鍵.三、解答題(共66分)19、(1)詳見解析;(2)【分析】(1)利用樹狀圖列舉出所有可能,注意是放回小球再摸一次;(2)列舉出符合題意的各種情況的個數(shù),再根據(jù)概率公式解答即可【詳解】(1)列樹狀圖如下:故(紅,紅),(紅,黃),(紅,綠),(黃,紅),(黃,黃),(黃,綠),(綠,

19、紅),(綠,黃),(綠,綠)共9種情況(2)由樹狀圖可知共有339種可能,“兩次摸出球中至少有一個綠球”的有5種,所以概率是:.【點睛】本題考查的是用列表法或畫樹狀圖法求概率列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件用到的知識點為:概率所求情況數(shù)與總情況數(shù)之比20、(1)如圖,A1B1C1為所作;見解析;點B1的坐標為(3,2);(2)如圖,A2B2C2為所作;見解析;點C2的坐標為(2,4);(3)如圖,四邊形AB2A2B為正方形【分析】(1)利用網(wǎng)格特點和點平移的坐標規(guī)律寫出、的坐標,然后描點即可得到;(2)利用網(wǎng)格特點和關于原點對稱的點的坐標特征寫出、的

20、坐標,然后描點即可得到;(3)證明四條相等且對角線相等可判斷四邊形為正方形【詳解】解:(1)如圖1,為所作;點的坐標為;(2)如圖1,為所作;點的坐標為;(3)如圖1,四邊形為正方形,(理由:如圖2,在四邊形外側構造如圖所示直角三角形,由坐標網(wǎng)格的特點易證四個直角三角形全等,從而可得四邊形四邊都相等,四個角等于直角)【點睛】本題考查了作圖旋轉變換:根據(jù)旋轉的性質可知,對應角都相等都等于旋轉角,對應線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對應點,順次連接得出旋轉后的圖形21、(1)300,90;(2)10,18;(3)120人【分析】(1)根據(jù)打球人數(shù)占總人數(shù)的4

21、0%可求出總人數(shù),再根據(jù)比例關系求出游泳人數(shù),再用總人數(shù)減去打球、游泳、跳繩的人數(shù)即為的值;(2)用跳繩人數(shù)除以總人數(shù),得到n%的值,即可求出n,求出其他所占比例,再乘以360即可得到圓心角度數(shù);(3)用1200人乘以跳繩所占比例即可得出答案.【詳解】解:(1)總人數(shù)=(人)游泳人數(shù)(人)(人)故答案為:300,90;(2)n%=n=10,m%=1-40%-25%-20%-10%=5%“其他”對應的扇形的圓心角的度數(shù)為3605%=18故答案為:10,18;(3)由于在調查的300名學生中,喜歡“跳繩”項目的學生有30名,所占的比例為.所以該年級1200名學生中估計喜歡“跳繩”項目的有人.【點睛

22、】本題考查統(tǒng)計圖,解題的關鍵是找到表格數(shù)據(jù)與扇形圖中數(shù)據(jù)的對應關系.22、見解析【分析】作線段AB的垂直平分線即可得到AB的中點D.【詳解】如圖,作線段AB的垂直平分線即可得到AB的中點D.【點睛】此題考查作圖能力,作線段的垂直平分線,掌握畫圖方法是解題的關鍵.23、 (1);(2).【分析】(1)根據(jù)等腰三角形性質和三角形外角性質求出COD=2A,求出D=COD,根據(jù)切線性質求出OCD=90,即可求出答案;(2)由題意的半徑為2,求出OC=CD=2,根據(jù)勾股定理求出BD即可【詳解】解:(1)OA=OC,A=ACO,COD=A+ACO=2A,D=2A,D=COD,PD切O于C,OCD=90,D=COD=45;(2)D=COD,的半徑為2,OC=OB=CD=2,在RtOCD中,由勾股定理得:22+22=(2+BD)2,解得:【點睛】本題考查切線的性質,勾股定理,等腰三角形性質,三角形的外角性質的應用,主要考查學生的推理能力,熟練掌握切線的性質,勾股定理,等腰三角形性質,三角形的外角性質是解題關鍵24、 (

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論