高考數(shù)學(xué)(理數(shù))一輪復(fù)習(xí)學(xué)案8.6《空間向量及其加減、數(shù)乘和數(shù)量積運(yùn)算》(含詳解)_第1頁(yè)
高考數(shù)學(xué)(理數(shù))一輪復(fù)習(xí)學(xué)案8.6《空間向量及其加減、數(shù)乘和數(shù)量積運(yùn)算》(含詳解)_第2頁(yè)
高考數(shù)學(xué)(理數(shù))一輪復(fù)習(xí)學(xué)案8.6《空間向量及其加減、數(shù)乘和數(shù)量積運(yùn)算》(含詳解)_第3頁(yè)
高考數(shù)學(xué)(理數(shù))一輪復(fù)習(xí)學(xué)案8.6《空間向量及其加減、數(shù)乘和數(shù)量積運(yùn)算》(含詳解)_第4頁(yè)
高考數(shù)學(xué)(理數(shù))一輪復(fù)習(xí)學(xué)案8.6《空間向量及其加減、數(shù)乘和數(shù)量積運(yùn)算》(含詳解)_第5頁(yè)
已閱讀5頁(yè),還剩6頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、PAGE PAGE 1186空間向量及其加減、數(shù)乘和數(shù)量積運(yùn)算1空間向量的有關(guān)概念(1)空間向量:在空間,我們把具有_和_的量叫做空間向量(2)零向量:規(guī)定_的向量叫做零向量(3)單位向量:_的向量稱(chēng)為單位向量(4)相反向量:與向量a_的向量,稱(chēng)為a的相反向量,記為a(5)相等向量:_的向量稱(chēng)為相等向量(6)空間向量的加法運(yùn)算滿足交換律及結(jié)合律:ab_;(ab)c_2空間向量的數(shù)乘運(yùn)算(1)向量的數(shù)乘:實(shí)數(shù)與空間向量a的乘積a仍然是一個(gè)向量,稱(chēng)為向量的數(shù)乘當(dāng)_0時(shí),a與向量a方向相同;當(dāng)_0時(shí),a與向量a方向相反a的長(zhǎng)度是向量a的長(zhǎng)度的_倍(2)空間向量的數(shù)乘運(yùn)算滿足分配律及結(jié)合律:分配律:(

2、ab)_結(jié)合律:(a)_(3)共線向量:如果表示空間向量的有向線段所在的直線_,則這些向量叫做共線向量或平行向量(4)共線向量定理:對(duì)空間任意兩個(gè)向量a,beq blc(rc)(avs4alco1(b0),ab的充要條件是_(5)空間直線l的方向向量:和直線l_的非零向量a叫做直線l的方向向量(6)空間直線的向量表示:l為經(jīng)過(guò)已知點(diǎn)A且平行于已知非零向量a的直線,對(duì)空間任意一點(diǎn)O,點(diǎn)P在直線l上的充要條件是_,特別地,如果aeq o(AB,sup6(),則上式可以化為eq o(OP,sup6()eq o(OA,sup6()teq o(AB,sup6(),或_,這也是空間三點(diǎn)A,B,P共線的充要

3、條件(7)共面向量:_的向量叫做共面向量(8)空間共面向量定理:如果兩個(gè)向量a,b不共線,那么向量p與向量a,b共面的充要條件是_推論:對(duì)空間任意一點(diǎn)O和不共線的三點(diǎn)A,B,C,滿足向量關(guān)系式_,其中_,則點(diǎn)P與點(diǎn)A,B,C共面3空間向量的數(shù)量積運(yùn)算(1)空間向量的數(shù)量積:已知兩個(gè)非零向量a,b,則_叫做a,b的數(shù)量積,記作ab,通常規(guī)定,0a,b對(duì)于兩個(gè)非零向量a,b,ab_(2)空間零向量與任何向量的數(shù)量積為_(kāi)(3)aaeq blc|rc|(avs4alco1(a)eq blc|rc|(avs4alco1(a)cosa,a_(4)空間向量的數(shù)量積滿足如下的運(yùn)算律:eq blc(rc)(av

4、s4alco1(a)b_;ab_(交換律);aeq blc(rc)(avs4alco1(bc)_(分配律)自查自糾:1(1)大小方向(2)長(zhǎng)度為0(3)模為1(4)長(zhǎng)度相等而方向相反(5)方向相同且模相等(6)baa(bc)2(1)eq blc|rc|(avs4alco1()(2)abeq blc(rc)(avs4alco1()a(3)互相平行或重合(4)存在實(shí)數(shù),使ab(5)平行(6)存在實(shí)數(shù)t,使eq o(OP,sup6()eq o(OA,sup6()taeq o(OP,sup6()eq blc(rc)(avs4alco1(1t)eq o(OA,sup6()teq o(OB,sup6()(

5、7)平行于同一個(gè)平面(8)存在惟一的有序?qū)崝?shù)對(duì)(x,y),使pxaybeq o(OP,sup6()xeq o(OA,sup6()yeq o(OB,sup6()zeq o(OC,sup6()xyz13(1)eq blc|rc|(avs4alco1(a)eq blc|rc|(avs4alco1(b)cosa,bab0(2)0(3)eq blc|rc|(avs4alco1(a)2(4)eq blc(rc)(avs4alco1(ab)baabac 已知點(diǎn)O,A,B,C為空間不共面的四點(diǎn),且向量aeq o(OA,sup6()eq o(OB,sup6()eq o(OC,sup6(),向量beq o(OA,

6、sup6()eq o(OB,sup6()eq o(OC,sup6(),則與a,b不能構(gòu)成空間基底的向量是 ()Aeq o(OA,sup6() Beq o(OB,sup6()Ceq o(OC,sup6() Deq o(OA,sup6()或eq o(OB,sup6()解:根據(jù)題意得eq o(OC,sup6()eq f(1,2)(ab),所以eq o(OC,sup6(),a,b共面故選C 有如下四個(gè)關(guān)于空間向量的命題(x,yR):若pxayb,則p與a,b共面;若p與a,b共面,則pxayb;若eq o(MP,sup6()xeq o(MA,sup6()yeq o(MB,sup6(),則P,M,A,B

7、共面;若P,M,A,B共面,則eq o(MP,sup6()xeq o(MA,sup6()yeq o(MB,sup6()其中真命題的個(gè)數(shù)是 ()A1 B2 C3 D4解:正確中若a,b共線,p與a不共線,則pxayb就不成立正確中若M,A,B共線,點(diǎn)P不在此直線上,則eq o(MP,sup6()xeq o(MA,sup6()yeq o(MB,sup6()不正確故選B 如圖所示,已知空間四邊形OABC,OBOC,且AOBAOCeq f(,3),則coseq o(OA,sup6(),eq o(BC,sup6()的值為 ()A0 Beq f(1,2)Ceq f(r(3),2) Deq f(r(2),2

8、)解:設(shè)eq o(OA,sup6()a,eq o(OB,sup6()b,eq o(OC,sup6()c,由已知條件a,ba,ceq f(,3),且|b|c|,eq o(OA,sup6()eq o(BC,sup6()a(cb)acabeq f(1,2)|a|c|eq f(1,2)|a|b|0,所以coseq o(OA,sup6(),eq o(BC,sup6()0故選A 如圖所示,在長(zhǎng)方體ABCDA1B1C1D1中,O為AC的中點(diǎn)(1)化簡(jiǎn):eq o(A1O,sup6()eq f(1,2)eq o(AB,sup6()eq f(1,2)eq o(AD,sup6()_(2)用eq o(AB,sup6(

9、),eq o(AD,sup6(),eq o(AA1,sup6()表示eq o(OC1,sup6(),則eq o(OC1,sup6()_解:(1)eq o(A1O,sup6()eq f(1,2)eq o(AB,sup6()eq f(1,2)eq o(AD,sup6()eq o(A1O,sup6()eq f(1,2)(eq o(AB,sup6()eq o(AD,sup6()eq o(A1O,sup6()eq o(AO,sup6()eq o(A1O,sup6()eq o(OA,sup6()eq o(A1A,sup6()(2)因?yàn)閑q o(OC,sup6()eq f(1,2)eq o(AC,sup6(

10、)eq f(1,2)(eq o(AB,sup6()eq o(AD,sup6(),所以eq o(OC1,sup6()eq o(OC,sup6()eq o(CC1,sup6()eq f(1,2)(eq o(AB,sup6()eq o(AD,sup6()eq o(AA1,sup6()eq f(1,2)eq o(AB,sup6()eq f(1,2)eq o(AD,sup6()eq o(AA1,sup6()故填eq o(A1A,sup6();eq f(1,2)eq o(AB,sup6()eq f(1,2)eq o(AD,sup6()eq o(AA1,sup6() (eq avs4al(2017鞍山市育英

11、中學(xué)月考)已知在正方體ABCDA1B1C1D1中,側(cè)面CC1D1D的中心是F,若 eq o(AF,sup6()eq o(AD,sup6()meq o(AB,sup6()neq o(AA1,sup6(),則m_,n_解:因?yàn)閑q o(AF,sup6()eq o(AD,sup6()eq o(DF,sup6()eq o(AD,sup6()eq f(1,2)(eq o(DC,sup6()eq o(DD1,sup6()eq o(AD,sup6()eq f(1,2)(eq o(AB,sup6()eq o(AA1,sup6()eq o(AD,sup6()eq f(1,2)eq o(AB,sup6()eq f

12、(1,2)eq o(AA1,sup6(),所以mneq f(1,2)故填eq f(1,2);eq f(1,2)類(lèi)型一空間向量的運(yùn)算在三棱錐OABC中,M,N分別是OA,BC的中點(diǎn),G是ABC的重心,用基向量eq o(OA,sup6(),eq o(OB,sup6(),eq o(OC,sup6()表示eq o(MG,sup6(),eq o(OG,sup6()解:eq o(MG,sup6()eq o(MA,sup6()eq o(AG,sup6()eq f(1,2)eq o(OA,sup6()eq f(2,3)eq o(AN,sup6()eq f(1,2)eq o(OA,sup6() eq f(2,3

13、)(eq o(ON,sup6()eq o(OA,sup6()eq f(1,2)eq o(OA,sup6()eq f(2,3)eq blcrc(avs4alco1(f(1,2)(o(OB,sup6()o(OC,sup6())o(OA,sup6() eq f(1,6)eq o(OA,sup6() eq f(1,3)eq o(OB,sup6()eq f(1,3)eq o(OC,sup6()eq o(OG,sup6()eq o(OM,sup6()eq o(MG,sup6()eq f(1,2)eq o(OA,sup6()eq f(1,6)eq o(OA,sup6()eq f(1,3)eq o(OB,su

14、p6()eq f(1,3)eq o(OC,sup6()eq f(1,3)eq o(OA,sup6()eq f(1,3)eq o(OB,sup6()eq f(1,3)eq o(OC,sup6()點(diǎn) 撥:把平面向量的運(yùn)算推廣到空間后,許多基本的運(yùn)算規(guī)則沒(méi)有變,在解題過(guò)程中,要明確目標(biāo),把所求向量向三個(gè)基底向量轉(zhuǎn)化,并注意向量拆分和重組的技巧若表示的向量涉及線段的中點(diǎn),可利用平行四邊形法則來(lái)表示此向量,也可利用包含要表示的向量的封閉圖形,根據(jù)封閉圖形各邊依次構(gòu)成的向量之和為零向量得到相關(guān)式子;求空間若干向量之和時(shí),可通過(guò)平移,將它們轉(zhuǎn)化為首尾相接的向量如圖,平行六面體ABCDA1B1C1D1中,eq

15、 o(AB,sup6()a,eq o(AD,sup6()b,eq o(AA1,sup6()c,E為A1D1的中點(diǎn),F(xiàn)為BC1與B1C的交點(diǎn)(1)用基底a,b,c表示下列向量:eq o(DB1,sup6(),eq o(BE,sup6(),eq o(AF,sup6();(2)在圖中畫(huà)出eq o(DD1,sup6()eq o(DB,sup6()eq o(CD,sup6()化簡(jiǎn)后的向量解:(1)eq o(DB1,sup6()eq o(DC,sup6()eq o(CB1,sup6()eq o(DC,sup6()eq o(BB1,sup6()eq o(BC,sup6()a bc,eq o(BE,sup6(

16、)eq o(BA,sup6()eq o(AA1,sup6()eq o(A1E,sup6()aeq f(1,2)bc,eq o(AF,sup6()eq o(AB,sup6()eq o(BF,sup6()aeq f(1,2)(bc)aeq f(1,2)beq f(1,2)c(2)eq o(DD1,sup6()eq o(DB,sup6()eq o(CD,sup6()eq o(DD1,sup6()(eq o(CD,sup6()eq o(DB,sup6()eq o(DD1,sup6()eq o(CB,sup6()eq o(DD1,sup6()eq o(D1A1,sup6()eq o(DA1,sup6()

17、連接DA1,則eq o(DA1,sup6()即為所求類(lèi)型二空間向量共線與共面問(wèn)題(1)如圖,在棱長(zhǎng)為a的正方體ABCDA1B1C1D1中,G為BC1D的重心()求證:A1,G,C三點(diǎn)共線;()求證:A1C平面BC1D;()求點(diǎn)C到平面BC1D的距離解:()證明:由于正方體ABCDA1B1C1D1是平行六面體,所以eq o(CA1,sup6()eq o(CA,sup6()eq o(AA1,sup6()eq o(CB,sup6()eq o(CD,sup6()eq o(CC1,sup6()又因?yàn)辄c(diǎn)G為BC1D的重心,所以eq o(CG,sup6()eq f(1,3)eq blc(rc)(avs4al

18、co1(o(CB,sup6()o(CD,sup6()o(CC1,sup6()eq f(1,3)eq o(CA1,sup6()故eq o(CG,sup6()eq o(CA1,sup6(),即A1,G,C三點(diǎn)共線()證明:設(shè)eq o(CB,sup6()b,eq o(CD,sup6() c,eq o(CC1,sup6()d,則eq blc|rc|(avs4alco1(b)eq blc|rc|(avs4alco1(c)eq blc|rc|(avs4alco1(d),且bcbdcd0因?yàn)閑q o(CA1,sup6()eq o(CB,sup6()eq o(CD,sup6()eq o(CC1,sup6()b

19、cd,eq o(BC1,sup6()eq o(BC,sup6()eq o(CC1,sup6()db,所以eq o(CA1,sup6()eq o(BC1,sup6()(bcd)(db)a2a20所以eq o(CA1,sup6()eq o(BC1,sup6(),即CA1BC1同理可證CA1BD又BC1BDB,所以CA1面BC1D()由上面的證明知點(diǎn)C到平面BC1D的距離為CG因?yàn)閑q o(CA1,sup6()bcd,所以eq blc|rc|(avs4alco1(o(CA1,sup6()eq r(3)a所以eq blc|rc|(avs4alco1(o(CG,sup6()eq f(1,3)eq blc

20、|rc|(avs4alco1(o(CA1,sup6()eq f(r(3),3)a(2)正方體ABCDA1B1C1D1中,E,F(xiàn)分別為BB1和A1D1的中點(diǎn)求證:向量eq o(A1B,sup6(),eq o(B1C,sup6(),eq o(EF,sup6()是共面向量證明:因?yàn)閑q o(EF,sup6()eq o(EB,sup6()eq o(BA1,sup6()eq o(A1F,sup6()eq f(1,2)eq o(B1B,sup6()eq o(A1B,sup6()eq f(1,2)eq o(A1D1,sup6()eq f(1,2)(eq o(B1B,sup6()eq o(BC,sup6()e

21、q o(A1B,sup6()eq f(1,2)eq o(B1C,sup6()eq o(A1B,sup6(),所以向量eq o(A1B,sup6(),eq o(B1C,sup6(),eq o(EF,sup6()是共面向量點(diǎn)撥:題(1)利用平行向量的充要條件可解決三點(diǎn)共線和線線平行等問(wèn)題,要注意空間向量基底的選取,同時(shí)要重視空間向量基本定理的使用,用基底表示已知條件和所需解決問(wèn)題的過(guò)程就是將幾何問(wèn)題轉(zhuǎn)化為向量問(wèn)題的過(guò)程通過(guò)向量的數(shù)量積運(yùn)算,可證明垂直問(wèn)題,亦可計(jì)算直線與平面所成角、異面直線所成角以及距離等問(wèn)題題(2)要證向量eq o(A1B,sup6(),eq o(B1C,sup6(),eq o(

22、EF,sup6()是共面向量,只需證得eq o(EF,sup6()eq o(A1B,sup6()eq o(B1C,sup6(),解題的關(guān)鍵是尋找有序?qū)崝?shù)對(duì)(,)滿足上述關(guān)系式如圖所示,已知E,F(xiàn),G,H分別是空間四邊形ABCD的邊AB,BC,CD,DA的中點(diǎn),用向量方法證明:(1)E,F(xiàn),G,H四點(diǎn)共面;(2)BD平面EFGH證明:(1)連接BG,EG,則eq o(EG,sup6()eq o(EB,sup6()eq o(BG,sup6()eq o(EB,sup6()eq f(1,2)(eq o(BC,sup6()eq o(BD,sup6()eq o(EB,sup6()eq o(BF,sup6(

23、)eq o(EH,sup6()eq o(EF,sup6()eq o(EH,sup6(),由共面向量定理知,E,F(xiàn),G,H四點(diǎn)共面(2)因?yàn)閑q o(EH,sup6()eq o(AH,sup6()eq o(AE,sup6()eq f(1,2)eq o(AD,sup6()eq f(1,2)eq o(AB,sup6()eq f(1,2)(eq o(AD,sup6()eq o(AB,sup6()eq f(1,2)eq o(BD,sup6(),且E,H,B,D四點(diǎn)不共線,所以EHBD又EH平面EFGH,BD平面EFGH,所以BD平面EFGH類(lèi)型三利用數(shù)量積求長(zhǎng)度問(wèn)題如圖所示,四棱柱ABCDA1B1C1D

24、1中,底面為平行四邊形,以頂點(diǎn)A為端點(diǎn)的三條棱長(zhǎng)都為1,且兩兩夾角為60則AC1的長(zhǎng)為_(kāi)解:記eq o(AB,sup6()a,eq o(AD,sup6()b,eq o(AA1,sup6()c,則|a|b|c|1,a,bb,cc,a60,所以abbccaeq f(1,2)|eq o(AC1,sup6()|2(abc)2a2b2c22(abbcca)1112(eq f(1,2)eq f(1,2)eq f(1,2)6,所以|eq o(AC1,sup6()|eq r(6),即AC1的長(zhǎng)為eq r(6)故填eq r(6)點(diǎn)撥:要求一個(gè)向量的模,就需要把向量分解成幾個(gè)已知向量的和,利用向量的平方等于向量的

25、模的平方可求出模的平方,進(jìn)一步求出模這里要注意向量和向量的夾角對(duì)數(shù)量積的影響如圖所示,已知在一個(gè)60的二面角的棱上,有兩個(gè)點(diǎn)A,B,AC,BD分別是在這個(gè)二面角的兩個(gè)面內(nèi)垂直于AB的線段,且AB4cm,AC6cm,BD8cm,則CD的長(zhǎng)為_(kāi)cm解:因?yàn)閑q o(CD,sup6()eq o(CA,sup6()eq o(AB,sup6()eq o(BD,sup6()eq o(AB,sup6()eq o(AC,sup6()eq o(BD,sup6(),所以eq o(CD,sup6()2(eq o(AB,sup6()eq o(AC,sup6()eq o(BD,sup6()2(eq o(AB,sup6(

26、)eq o(AC,sup6()2eq o(BD,sup6()22(eq o(AB,sup6()eq o(AC,sup6()eq o(BD,sup6()eq o(AB,sup6()2eq o(AC,sup6()22eq o(AB,sup6()eq o(AC,sup6()eq o(BD,sup6()22eq o(AB,sup6()eq o(BD,sup6()2eq o(AC,sup6()eq o(BD,sup6()163664268cos6068所以eq blc|rc|(avs4alco1(o(CD,sup6()2eq r(17)cm故填2eq r(17)類(lèi)型四異面直線所成角問(wèn)題(eq avs4a

27、l(2017遼中縣第二高級(jí)中學(xué)月考)如圖所示,已知空間四邊形ABCD的每條邊和對(duì)角線長(zhǎng)都等于1,點(diǎn)E,F(xiàn),G分別是AB,AD,CD的中點(diǎn),計(jì)算:(1)eq o(EF,sup6()eq o(BA,sup6();(2)EG的長(zhǎng);(3)異面直線AG與CE所成角的余弦值解:設(shè)eq o(AB,sup6()a,eq o(AC,sup6()b,eq o(AD,sup6()c則|a|b|c|1,a,bb,cc,a60,(1)eq o(EF,sup6()eq f(1,2)eq o(BD,sup6()eq f(1,2)ceq f(1,2)a,eq o(BA,sup6()a,eq o(EF,sup6()eq o(B

28、A,sup6()eq blc(rc)(avs4alco1(f(1,2)cf(1,2)a)(a)eq f(1,2)a2eq f(1,2)aceq f(1,4),(2)eq o(EG,sup6()eq o(EB,sup6()eq o(BC,sup6()eq o(CG,sup6()eq f(1,2)abaeq f(1,2)ceq f(1,2)beq f(1,2)aeq f(1,2)beq f(1,2)c,|eq o(EG,sup6()|2eq f(1,4)a2eq f(1,4)b2eq f(1,4)c2eq f(1,2)abeq f(1,2)bceq f(1,2)caeq f(1,2),則|eq o

29、(EG,sup6()|eq f(r(2),2)(3)eq o(AG,sup6()eq f(1,2)beq f(1,2)c,eq o(CE,sup6()eq o(CA,sup6()eq o(AE,sup6()beq f(1,2)a,coseq o(AG,sup6(),eq o(CE,sup6()eq f(o(AG,sup6()o(CE,sup6(),|o(AG,sup6()|o(CE,sup6()|)eq f(2,3),由于異面直線所成角的范圍是eq blc(rc(avs4alco1(0,f(,2),所以異面直線AG與CE所成角的余弦值為eq f(2,3)點(diǎn) 撥:要求異面直線AG與CE所成角的余

30、弦值,可利用向量的數(shù)量積,求出eq o(AG,sup6()eq o(CE,sup6()及|eq o(AG,sup6()|和|eq o(CE,sup6()|的值,再套用公式coseq o(AG,sup6(),eq o(CE,sup6()eq f(o(AG,sup6()o(CE,sup6(),|o(AG,sup6()|o(CE,sup6()|)求得eq o(AG,sup6()與eq o(CE,sup6()所成角的余弦值,但上述結(jié)果并不一定是異面直線所成的角,由于異面直線所成角的取值范圍為eq blc(rc(avs4alco1(0,f(,2),所以,若求得的余弦值為負(fù)值,則取其絕對(duì)值如圖所示,四棱柱

31、ABCDA1B1C1D1中,底面為平行四邊形,以頂點(diǎn)A為端點(diǎn)的三條棱長(zhǎng)都為1,且兩兩夾角為60則異面直線BD1與AC夾角的余弦值為_(kāi)解:記eq o(AB,sup6()a,eq o(AD,sup6()b,eq o(AA1,sup6()c,則|a|b|c|1,a,bb,cc,a60,所以abbccaeq f(1,2)eq o(BD1,sup6()bca,eq o(AC,sup6()ab,所以|eq o(BD1,sup6()|eq r(2), |eq o(AC,sup6()|eq r(3)所以coseq o(BD1,sup6(),eq o(AC,sup6()eq f(o(BD1,sup6()o(AC

32、,sup6(),|o(BD1,sup6()|o(AC,sup6()|)eq f((bca)(ab),r(2)r(3)eq f(r(6),6)故填eq f(r(6),6)1空間向量的線性運(yùn)算用已知向量表示未知向量,一定要結(jié)合圖形,可從以下角度入手(1)要有基向量意識(shí),把有關(guān)向量盡量統(tǒng)一到基向量上來(lái)(2)把被表示向量用其他向量線性表示,進(jìn)而尋找這些向量與基向量的關(guān)系(3)用基向量表示一個(gè)向量時(shí),如果此向量的起點(diǎn)是從基底的公共點(diǎn)出發(fā)的,一般考慮用加法,否則考慮用減法,如果此向量與一個(gè)易求的向量共線,可用數(shù)乘(4)注意應(yīng)用以下結(jié)論A為BC的中點(diǎn),O為空間任一點(diǎn),則eq o(OA,sup6()eq f(

33、o(OB,sup6()o(OC,sup6(),2);A,B,C三點(diǎn)共線,O為空間任一點(diǎn),則 eq o(OA,sup6()eq blc(rc)(avs4alco1(1t)eq o(OB,sup6()teq o(OC,sup6()(tR)2共線向量定理、共面向量定理的應(yīng)用應(yīng)用共線向量定理、共面向量定理,可以證明點(diǎn)共線、點(diǎn)共面、線共面(1)證明空間任意三點(diǎn)共線的方法對(duì)空間三點(diǎn)P,A,B,可通過(guò)證明下列結(jié)論成立來(lái)證明三點(diǎn)共線:eq o(PA,sup6()eq o(PB,sup6();對(duì)空間任一點(diǎn)O,存在實(shí)數(shù)t,使eq o(OP,sup6()eq o(OA,sup6()teq o(AB,sup6();對(duì)

34、空間任一點(diǎn)O,eq o(OP,sup6()eq blc(rc)(avs4alco1(1t)eq o(OA,sup6()teq o(OB,sup6()或eq o(OP,sup6()xeq o(OA,sup6()yeq o(OB,sup6(),這里xy1(2)證明空間四點(diǎn)共面的方法對(duì)空間四點(diǎn)P,M,A,B,可通過(guò)證明下列結(jié)論成立來(lái)證明四點(diǎn)共面:eq o(MP,sup6()xeq o(MA,sup6()yeq o(MB,sup6();對(duì)空間任一點(diǎn)O,eq o(OP,sup6()eq o(OM,sup6()xeq o(MA,sup6()yeq o(MB,sup6();對(duì)空間任一點(diǎn)O,eq o(OP,s

35、up6()xeq o(OA,sup6()yeq o(OB,sup6()zeq o(OM,sup6(),其中xyz1;eq o(PM,sup6()eq o(AB,sup6()注:在中,若xyzeq f(1,3),則點(diǎn)P即為MAB的重心設(shè)Meq blc(rc)(avs4alco1(x1,y1,z1),Aeq blc(rc)(avs4alco1(x2,y2,z2),Beq blc(rc)(avs4alco1(x3,y3,z3),Peq blc(rc)(avs4alco1(x,y,z),若P為MAB的重心,則eq blc(avs4alco1(xf(x1x2x3,3),,yf(y1y2y3,3),,zf

36、(z1z2z3,3),)此即為三角形重心坐標(biāo)公式3利用向量解決立體幾何問(wèn)題的一般方法(1)利用向量解決立體幾何問(wèn)題的一般方法是:把線段或者角度轉(zhuǎn)化為向量表示,用已知向量(基底或者是建立空間直角坐標(biāo)系)表示未知向量,然后通過(guò)向量的運(yùn)算或證明去解決平行、垂直、夾角、距離等問(wèn)題(2)通常選取兩兩垂直的向量作為基底,其余的向量都利用這些基底向量來(lái)表示,為進(jìn)一步利用向量進(jìn)行計(jì)算做鋪墊(3)求兩個(gè)向量的夾角一般是利用夾角公式 cosa,beq f(ab,|a|b|);證明兩個(gè)非零向量垂直可利用ab01(eq avs4al(2017上饒期中)如圖所示,三棱錐OABC中,M,N分別是AB,OC的中點(diǎn),設(shè)eq

37、o(OA,sup6()a, eq o(OB,sup6()b,eq o(OC,sup6()c,用a,b,c表示eq o(NM,sup6(),則eq o(NM,sup6()()Aeq f(1,2)(abc) Beq f(1,2)(abc)Ceq f(1,2)(abc) Deq f(1,2)(abc)解:eq o(NM,sup6()eq o(NA,sup6()eq o(AM,sup6()eq o(OA,sup6()eq o(ON,sup6()eq f(1,2)eq o(AB,sup6()eq o(OA,sup6() eq f(1,2)eq o(OC,sup6()eq f(1,2)(eq o(OB,s

38、up6()eq o(OA,sup6()eq f(1,2)eq o(OA,sup6()eq f(1,2)eq o(OB,sup6()eq f(1,2)eq o(OC,sup6()eq f(1,2)(abc),故選B2(eq avs4al(2017上海奉賢二模)已知長(zhǎng)方體ABCDA1B1C1D1,下列向量的數(shù)量積一定不為0的是 ()Aeq o(AD1,sup6()eq o(B1C,sup6() Beq o(BD1,sup6()eq o(AC,sup6()Ceq o(AB,sup6()eq o(AD1,sup6() Deq o(BD1,sup6()eq o(BC,sup6()解:當(dāng)側(cè)面BCC1B1是

39、正方形時(shí),可得eq o(AD1,sup6()eq o(B1C,sup6()0,所以排除A當(dāng)?shù)酌鍭BCD是正方形時(shí),AC垂直于對(duì)角面BD1,所以排除B顯然也排除C由題圖可得,BD1與BC所成的角小于90故選D3如圖所示,已知PA平面ABC,ABC120,PAABBC6,則|eq o(PC,sup6()|等于 ()A6 B6eq r(2)C12 D144解:因?yàn)閑q o(PC,sup6()eq o(PA,sup6()eq o(AB,sup6()eq o(BC,sup6(),所以eq o(PC,sup6()2eq o(PA,sup6()2eq o(AB,sup6()2eq o(BC,sup6()22

40、eq o(AB,sup6()eq o(BC,sup6()363636236cos60144,所以|eq o(PC,sup6()|12故選C4已知空間四邊形ABCD的每條邊和對(duì)角線的長(zhǎng)都等于a,點(diǎn)E,F(xiàn)分別是BC,AD的中點(diǎn),則eq o(AE,sup6()eq o(AF,sup6()的值為 ()Aa2 Beq f(1,2)a2 Ceq f(1,4)a2 Deq f(r(3),4)a2解:eq o(AE,sup6()eq o(AF,sup6()eq f(1,2)(eq o(AB,sup6()eq o(AC,sup6()eq f(1,2)eq o(AD,sup6()eq f(1,4)(eq o(AB

41、,sup6()eq o(AD,sup6()eq o(AC,sup6()eq o(AD,sup6()eq f(1,4)(a2cos60a2cos60)eq f(1,4)a2故選C5設(shè)OABC是四面體,G1是ABC的重心,G是OG1上的一點(diǎn),且OG3GG1,若eq o(OG,sup6()xeq o(OA,sup6()yeq o(OB,sup6()zeq o(OC,sup6(),則(x,y,z)為 ()Aeq blc(rc)(avs4alco1(f(1,4),f(1,4),f(1,4) Beq blc(rc)(avs4alco1(f(3,4),f(3,4),f(3,4)Ceq blc(rc)(avs

42、4alco1(f(1,3),f(1,3),f(1,3) Deq blc(rc)(avs4alco1(f(2,3),f(2,3),f(2,3)解:如圖所示,取BC的中點(diǎn)E,連接AEeq o(OG,sup6()eq f(3,4)eq o(OG,sup6()1eq f(3,4)(eq o(OA,sup6()eq o(AG1,sup6()eq f(3,4)eq o(OA,sup6()eq f(1,2)eq o(AE,sup6()eq f(3,4)eq o(OA,sup6()eq f(1,4)(eq o(AB,sup6()eq o(AC,sup6()eq f(3,4)eq o(OA,sup6()eq f

43、(1,4)(eq o(OB,sup6()eq o(OA,sup6()eq o(OC,sup6()eq o(OA,sup6()eq f(1,4)(eq o(OA,sup6()eq o(OB,sup6()eq o(OC,sup6()故選A6(eq avs4al(2017沈陽(yáng)雨田實(shí)驗(yàn)中學(xué)月考)正方體ABCDA1B1C1D1的棱長(zhǎng)為1,E為CC1的中點(diǎn),則異面直線AB1,BE所成角的余弦值為 ()Aeq f(1,2) Beq f(r(3),2) Ceq f(3r(10),10) Deq f(r(10),10)解:eq o(AB1,sup6()eq o(BE,sup6()(eq o(AB,sup6()e

44、q o(BB1,sup6()(eq o(BC,sup6()eq o(CE,sup6()eq o(AB,sup6()eq o(BC,sup6()eq o(AB,sup6()eq o(CE,sup6()eq o(BB1,sup6()eq o(BC,sup6()eq o(BB1,sup6()eq o(CE,sup6()000eq f(1,2)eq f(1,2)依題意易知|eq o(AB1,sup6()|eq r(2),|eq o(BE,sup6()|eq f(r(5),2),所以coseq o(AB1,sup6(),eq o(BE,sup6()eq f(o(AB1,sup6()o(BE,sup6()

45、,|o(AB1,sup6()|o(BE,sup6()|)eq f(r(10),10)故選D7(eq avs4al(2017十堰市竹山縣第一中學(xué)月考)O為空間中任意一點(diǎn),A,B,C三點(diǎn)不共線,且eq o(OP,sup6()eq f(3,4)eq o(OA,sup6()eq f(1,8)eq o(OB,sup6()teq o(OC,sup6(),若P,A,B,C四點(diǎn)共面,則實(shí)數(shù)t_解:因?yàn)镻,A,B,C四點(diǎn)共面,所以eq f(3,4)eq f(1,8)t1,所以teq f(1,8)故填eq f(1,8)8如圖所示,在平行六面體ABCDA1B1C1D1中,M為A1C1與B1D1的交點(diǎn)若eq o(AB

46、,sup6()a,eq o(AD,sup6()b,eq o(AA1,sup6()c,則eq o(BM,sup6()可用a,b,c表示為_(kāi)解:由圖可知,eq o(BM,sup6()eq o(BB1,sup6()eq o(B1M,sup6()eq o(BB1,sup6()eq f(1,2)eq o(B1D1,sup6()eq o(BB1,sup6()eq f(1,2)(eq o(A1D1,sup6()eq o(A1B1,sup6()ceq f(1,2)(ba)eq f(1,2)aeq f(1,2)bc故填eq f(1,2)aeq f(1,2)bc9如圖所示,已知斜三棱柱ABCA1B1C1中,點(diǎn)M,

47、N分別在AC1和BC上,且滿足eq o(AM,sup6()keq o(AC1,sup6(),eq o(BN,sup6()keq o(BC,sup6()(0k1),問(wèn)向量eq o(MN,sup6()是否與向量eq o(AB,sup6(),eq o(AA1,sup6()共面?解:因?yàn)閑q o(AM,sup6()keq o(AC1,sup6(),eq o(BN,sup6()keq o(BC,sup6(),所以eq o(MN,sup6()eq o(MA,sup6()eq o(AB,sup6()eq o(BN,sup6()keq o(C1A,sup6()eq o(AB,sup6()keq o(BC,su

48、p6()k(eq o(C1A,sup6()eq o(BC,sup6()eq o(AB,sup6()k(eq o(C1A,sup6()eq o(B1C1,sup6()eq o(AB,sup6()keq o(B1A,sup6()eq o(AB,sup6()eq o(AB,sup6()keq o(AB1,sup6()eq o(AB,sup6()k(eq o(AA1,sup6()eq o(AB,sup6()(1k)eq o(AB,sup6()keq o(AA1,sup6(),由共面向量定理知,向量eq o(MN,sup6()與向量eq o(AB,sup6(),eq o(AA1,sup6()共面10如圖

49、,在空間四邊形OABC中,若OA8,AB6,AC4,BC5,OAC45,OAB60,求OA與BC所成角的余弦值解:因?yàn)閑q o(BC,sup6()eq o(AC,sup6()eq o(AB,sup6(),所以eq o(OA,sup6()eq o(BC,sup6()eq o(OA,sup6()(eq o(AC,sup6()eq o(AB,sup6()eq o(OA,sup6()eq o(AC,sup6()eq o(OA,sup6()eq o(AB,sup6()|eq o(OA,sup6()|eq o(AC,sup6()|coseq o(OA,sup6(),eq o(AC,sup6()|eq o(OA,sup6()|eq o(AB,sup6()|coseq o(OA,sup6(),eq o(AB,sup6()84cos13586cos1202416eq r(2)所以coseq o(OA,sup6(),eq o(BC,sup6()eq f(o(OA,sup6()o(BC,sup6(),|o(OA,sup6()|o(BC,sup6()|)eq f(2416r(2),85)eq f(32r(2),5),故eq o(OA,sup6()與eq o(BC,sup6()夾角的余弦值為eq f(32r(2),5),即直線OA與BC所成角的余弦值為eq f(32r(2

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論