版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.反比例函數(shù)的圖象經(jīng)過點,,當時,的取值范圍是()A. B. C. D.2.已知,一次函數(shù)與反比例函數(shù)在同一直角坐標系中的圖象可能()A. B.C. D.3.如圖,函數(shù)的圖象與軸的一個交點坐標為(3,0),則另一交點的橫坐標為()A.﹣4 B.﹣3 C.﹣2 D.﹣14.如圖,各正方形的邊長均為1,則四個陰影三角形中,一定相似的一對是()A.①② B.①③ C.②③ D.③④5.如圖,滑雪場有一坡角α為20°的滑雪道,滑雪道AC的長為200米,則滑雪道的坡頂?shù)狡碌状怪备叨華B的長為()A.200tan20°米 B.米 C.200sin20°米 D.200cos20°米6.如圖,△ABC的三邊的中線AD,BE,CF的公共點為G,且AG:GD=2:1,若S△ABC=12,則圖中陰影部分的面積是()A.3 B.4 C.5 D.67.若關于的方程有兩個相等的根,則的值為()A.10 B.10或14 C.-10或14 D.10或-148.下列汽車標志圖片中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.9.如圖,在△ABC中,∠BAC的平分線AD與∠ACB的平分線CE交于點O,下列說法正確的是()A.點O是△ABC的內(nèi)切圓的圓心B.CE⊥ABC.△ABC的內(nèi)切圓經(jīng)過D,E兩點D.AO=CO10.如圖,在Rt△ABC中,∠ACB=90°,AC=BC=1,將繞點A逆時針旋轉30°后得到Rt△ADE,點B經(jīng)過的路徑為弧BD,則圖中陰影部分的面積是()A. B. C.- D.二、填空題(每小題3分,共24分)11.如圖,為了測量水塘邊A、B兩點之間的距離,在可以看到的A、B的點E處,取AE、BE延長線上的C、D兩點,使得CD∥AB,若測得CD=5m,AD=15m,ED=3m,則A、B兩點間的距離為_____m.12.已知,.且,設,則的取值范圍是______.13.A、B為⊙O上兩點,C為⊙O上一點(與A、B不重合),若∠ACB=100°,則∠AOB的度數(shù)為____°.14.已知實數(shù)x,y滿足,則x+y的最大值為_______.15.如圖,若△ADE∽△ACB,且=,DE=10,則BC=________16.如圖,在中,,,,用含和的代數(shù)式表示的值為:_________.17.一個不透明的袋子里裝有兩雙只有顏色不同的手套,小明已經(jīng)摸出一只手套,他再任意摸取一只,恰好兩只手套湊成同一雙的概率為__________.18.方程的根是_____.三、解答題(共66分)19.(10分)如圖,是的直徑,弦于點;點是延長線上一點,,.(1)求證:是的切線;(2)取的中點,連接,若的半徑為2,求的長.20.(6分)已知某二次函數(shù)圖象上部分點的橫坐標、縱坐標的對應值如下表.求此函數(shù)表達式.21.(6分)盒中有若干枚黑棋和白棋,這些棋除顏色外無其他差別,現(xiàn)讓學生進行摸棋試驗:每次摸出一枚棋,記錄顏色后放回搖勻.重復進行這樣的試驗得到以下數(shù)據(jù):摸棋的次數(shù)n1002003005008001000摸到黑棋的次數(shù)m245176124201250摸到黑棋的頻率(精確到0.001)0.2400.2550.2530.2480.2510.250(1)根據(jù)表中數(shù)據(jù)估計從盒中摸出一枚棋是黑棋的概率是;(精確到0.01)(2)若盒中黑棋與白棋共有4枚,某同學一次摸出兩枚棋,請計算這兩枚棋顏色不同的概率,并說明理由22.(8分)如圖,在△ABC中,∠ACB=90o,∠ABC=45o,點O是AB的中點,過A、C兩點向經(jīng)過點O的直線作垂線,垂足分別為E、F.(1)如圖①,求證:EF=AE+CF.(2)如圖②,圖③,線段EF、AE、CF之間又有怎樣的數(shù)量關系?請直接寫出你的猜想.23.(8分)如圖,點D、O在△ABC的邊AC上,以CD為直徑的⊙O與邊AB相切于點E,連結DE、OB,且DE∥OB.(1)求證:BC是⊙O的切線.(2)設OB與⊙O交于點F,連結EF,若AD=OD,DE=4,求弦EF的長.24.(8分)某苗圃用花盆培育某種花苗,經(jīng)過試驗發(fā)現(xiàn),每盆植人3株時,平均每株盈利3元.在同樣的栽培條件下,若每盆增加1株,平均每株盈利就減少0.5元,要使每盆的盈利為10元,且每盆植入株數(shù)盡可能少,每盆應植入多少株?25.(10分)如圖,BM是以AB為直徑的⊙O的切線,B為切點,BC平分∠ABM,弦CD交AB于點E,DE=OE.(1)求證:△ACB是等腰直角三角形;(2)求證:OA2=OE?DC:(3)求tan∠ACD的值.26.(10分)(1)已知如圖1,在中,,,點在內(nèi)部,點在外部,滿足,且.求證:.(2)已知如圖2,在等邊內(nèi)有一點,滿足,,,求的度數(shù).
參考答案一、選擇題(每小題3分,共30分)1、B【解析】由圖像經(jīng)過A(2,3)可求出k的值,根據(jù)反比例函數(shù)的性質可得時,的取值范圍.【詳解】∵比例函數(shù)的圖象經(jīng)過點,∴-3=,解得:k=-6,反比例函數(shù)的解析式為:y=-,∵k=-6<0,∴當時,y隨x的增大而增大,∵x=1時,y=-6,x=3時,y=-2,∴y的取值范圍是:-6<y<-2,故選B.【點睛】本題考查反比例函數(shù)的性質,k>0時,圖像在一、三象限,在各象限y隨x的增大而減??;k<0時,圖像在二、四象限,在各象限y隨x的增大而增大;熟練掌握反比例函數(shù)的性質是解題關鍵.2、A【分析】根據(jù)反比例函數(shù)圖象確定b的符號,結合已知條件求得a的符號,由a,b的符號確定一次函數(shù)圖象所經(jīng)過的象限.【詳解】解:若反比例函數(shù)經(jīng)過第一、三象限,則.所以.則一次函數(shù)的圖象應該經(jīng)過第一、二、三象限;若反比例函數(shù)經(jīng)過第二、四象限,則a<1.所以b>1.則一次函數(shù)的圖象應該經(jīng)過第二、三、四象限.故選項A正確;故選A.【點睛】本題考查了反比例函數(shù)的圖象性質和一次函數(shù)函數(shù)的圖象性質,要掌握它們的性質才能靈活解題.3、D【分析】根據(jù)到函數(shù)對稱軸距離相等的兩個點所表示的函數(shù)值相等可求解.【詳解】根據(jù)題意可得:函數(shù)的對稱軸直線x=1,則函數(shù)圖像與x軸的另一個交點坐標為(-1,0).故橫坐標為-1,故選D考點:二次函數(shù)的性質4、A【分析】利用勾股定理,求出四個圖形中陰影三角形的邊長,然后判斷哪兩個三角形的三邊成比例即可.【詳解】解:由圖,根據(jù)勾股定理,可得出①圖中陰影三角形的邊長分別為:;②圖中陰影三角形的邊長分別為:;③圖中陰影三角形的邊長分別為:;④圖中陰影三角形的邊長分別為:;可以得出①②兩個陰影三角形的邊長,所以圖①②兩個陰影三角形相似;故答案為:A.【點睛】本題考查相似三角形的判定,即如果兩個三角形三條邊對應成比例,則這兩個三角形相似;本題在做題過程中還需注意,陰影三角形的邊長利用勾股定理計算,有的圖形需要把小正方形補全后計算比較準確.5、C【解析】解:∵sin∠C=,∴AB=AC?sin∠C=200sin20°.故選C.6、B【分析】根據(jù)三角形的中線把三角形的面積分成相等的兩部分,知△ABC的面積即為陰影部分的面積的3倍.【詳解】∵△ABC的三條中線AD、BE,CF交于點G,∴S△CGE=S△AGE=S△ACF,S△BGF=S△BGD=S△BCF,∵S△ACF=S△BCF=S△ABC=×12=6,∴S△CGE=S△ACF=×6=2,S△BGF=S△BCF=×6=2,∴S陰影=S△CGE+S△BGF=1.故選:B.【點睛】此題主要考查根據(jù)三角形中線性質求解面積,熟練掌握,即可解題.7、D【分析】根據(jù)題意利用根的判別式,進行分析計算即可得出答案.【詳解】解:∵關于的方程有兩個相等的根,∴,即有,解得10或-14.故選:D.【點睛】本題考查的是根的判別式,熟知一元二次方程中,當時,方程有兩個相等的兩個實數(shù)根是解答此題的關鍵.8、C【解析】根據(jù)軸對稱圖形和中心對稱圖形的性質進行判斷即可.【詳解】A.既不是軸對稱圖形,也不是中心對稱圖形,錯誤;B.是軸對稱圖形,不是中心對稱圖形,錯誤;C.既是軸對稱圖形,也是中心對稱圖形,正確;D.是軸對稱圖形,不是中心對稱圖形,錯誤;故答案為:C.【點睛】本題考查了軸對稱圖形和中心對稱圖形的問題,掌握軸對稱圖形和中心對稱圖形的性質是解題的關鍵.9、A【分析】由∠BAC的平分線AD與∠ACB的平分線CE交于點O,得出點O是△ABC的內(nèi)心即可.【詳解】解:∵△ABC中,∠BAC的平分線AD與∠ACB的平分線CE交于點O,∴點O是△ABC的內(nèi)切圓的圓心;故選:A.【點睛】本題主要考察三角形的內(nèi)切圓與內(nèi)心,解題關鍵是熟練掌握三角形的內(nèi)切圓性質.10、A【分析】先根據(jù)勾股定理得到AB=,再根據(jù)扇形的面積公式計算出S扇形ABD,由旋轉的性質得到Rt△ADE≌Rt△ACB,于是S陰影部分=S△ADE+S扇形ABD-S△ABC=S扇形ABD.【詳解】∵∠ACB=90°,AC=BC=1,∴AB=,∴S扇形ABD=,又∵Rt△ABC繞A點逆時針旋轉30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S陰影部分=S△ADE+S扇形ABD?S△ABC=S扇形ABD=,故選A.【點睛】本題考查扇形面積計算,熟記扇形面積公式,采用作差法計算面積是解題的關鍵.二、填空題(每小題3分,共24分)11、20m【詳解】∵CD∥AB,∴△ABE∽△DCE,∴,∵AD=15m,ED=3m,∴AE=AD-ED=12m,又∵CD=5m,∴,∴3AB=60,∴AB=20m.故答案為20m.12、【分析】先根據(jù)已知得出n=1-m,將其代入y中,得出y關于m的二次函數(shù)即可得出y的范圍【詳解】解:∵∴n=1-m,∴∵,∴,∴當m=時,y有最小值,當m=0時,y=1當m=1時,y=1∴故答案為:【點睛】本題考查了二次函數(shù)的最值問題,熟練掌握二次函數(shù)的性質是解題的關鍵13、160°【分析】根據(jù)圓周角定理,由∠ACB=100°,得到它所對的圓心角∠α=2∠ACB=200°,用360°-200°即可得到圓心角∠AOB.【詳解】如圖,∵∠α=2∠ACB,
而∠ACB=100°,
∴∠α=200°,
∴∠AOB=360°-200°=160°.
故答案為:160°.【點睛】本題考查了圓周角定理.在同圓或等圓中,同弧和等弧所對的圓周角相等,一條弧所對的圓周角是它所對的圓心角的一半.14、4【解析】用含x的代數(shù)式表示y,計算x+y并進行配方即可.【詳解】∵∴∴∴當x=-1時,x+y有最大值為4故答案為4【點睛】本題考查的是求代數(shù)式的最大值,解題的關鍵是配方法的應用.15、15【分析】根據(jù)相似三角形的性質,列出比例式即可解決問題.【詳解】解:∵△ADE∽△ACB,∴,DE=10,∴,∴.【點睛】本題考查了相似三角形的性質,解題的關鍵是熟練掌握相似三角形的性質.16、【分析】分別在Rt△ABC和Rt△ADC中用AC和的三角函數(shù)表示出AB和AD,進一步即可求出結果.【詳解】解:在Rt△ABC中,∵,∴,在Rt△ADC中,∵,∴,∴.故答案為:.【點睛】本題考查了三角函數(shù)的知識,屬于??碱}型,熟練掌握正弦的定義是解題的關鍵.17、【分析】設一雙為紅色,另一雙為綠色,畫樹狀圖得出總結果數(shù)和恰好兩只手套湊成同一雙的結果數(shù),利用概率公式即可得答案.【詳解】畫樹狀圖如下:∵共有6種可能情況,恰好兩只手套湊成同一雙的情況有2種,∴恰好兩只手套湊成同一雙的概率為,故答案為:【點睛】本題考查用列表法或樹狀圖法求概率,熟練掌握概率公式是解題關鍵.18、0和-4.【分析】根據(jù)因式分解即可求解.【詳解】解∴x1=0,x2=-4,故填:0和-4.【點睛】此題主要考查一元二次方程的求解,解題的關鍵是熟知一元二次方程的解法.三、解答題(共66分)19、(1)見解析(2)【分析】(1)連接OE,OF,由垂徑定理和圓周角定理得到∠DOF=∠DOE.而∠DOE=2∠A,得出∠DOF=2∠A,證出∠OFD=90°.即可得出結論;(2)連接OM,由垂徑定理和勾股定理進行計算即可.【詳解】(1)連接OE,OF,如圖1所示:∵EF⊥AB,AB是⊙O的直徑,∴,∴∠DOF=∠DOE,∵∠DOE=2∠A,∠A=30°,∴∠DOF=60°,∵∠D=30°,∴∠OFD=90°.∴OF⊥FD.∴FD為⊙O的切線;(2)連接OM.如圖2所示:∵O是AB中點,M是BE中點,∴OM∥AE.∴∠MOB=∠A=30°.∵OM過圓心,M是BE中點,∴OM⊥BE.∴MB=OB=1,OM==.∵∠DOF=60°,∴∠MOF=90°.∴MF=.【點睛】本題考查了切線的判定、圓周角定理、勾股定理、直角三角形的性質、垂徑定理等知識;熟練掌握圓周角定理和垂徑定理是解題的關鍵.20、【分析】觀察圖表可知,此二次函數(shù)以x=1為軸對稱,頂點為(1,4),判斷適合套用頂點式y(tǒng)=a(x-h)2+k,得到,再將除頂點外的任意已知點代入,如點(-1,0),得a=-1.故所求函數(shù)表達式為【詳解】解:觀察圖表可知,當x=-1時y=0,當x=3時y=0,∴對稱軸為直線,頂點坐標為,∴設,∵當x=-1時y=0,∴,∴=-1,∴.【點睛】本題考查了用待定系數(shù)法求二次函數(shù)的解析式,這類問題首先應考慮能不能用簡便方法即能不能用頂點式和交點式來解,實在不行用一般形式.此題能觀察確定出對稱軸和頂點的坐標是關鍵.21、(1)0.25;(2).【分析】大量重復試驗下摸球的頻率可以估計摸球的概率;畫樹狀圖列出所有等可能結果,再找到符合條件的結果數(shù),根據(jù)概率公式求解.【詳解】(1)根據(jù)表中數(shù)據(jù)估計從盒中摸出一枚棋是黑棋的概率是0.25,故答案為0.25;(2)由(1)可知,黑棋的個數(shù)為4×0.25=1,則白棋子的個數(shù)為3,畫樹狀圖如下:由表可知,所有等可能結果共有12種情況,其中這兩枚棋顏色不同的有6種結果,所以這兩枚棋顏色不同的概率為.【點睛】本題考查了利用頻率估計概率的知識,解題的關鍵是了解大量重復試驗中某個事件發(fā)生的頻率能估計概率.22、(1)見解析;(2)圖②:EF=AE+CF圖③:EF=AE-CF,見解析【分析】(1)連接OC,運用AAS證△AOE≌△OCF即可;(2)按(1)中的方法,連接OC,證明△AOE≌△OCF,即可得出結論【詳解】(1)連接OC,∵△ABC是等腰直角三角形,∴∠AOC=90°,AO=CO,∵∠AOE+∠COF=90°,∠EAO+∠AOE=90°,∴∠EAO=∠COF,又∵AO=CO,∠AEO=∠CFO,∴△AOE≌△OCF(AAS)∴OE=CF,AE=OF∴EF=AE+CF(2)如圖②,連接OC,∵△ABC是等腰直角三角形,∴∠AOC=90°,AO=CO,∵∠AOE+∠COF=90°,∠EAO+∠AOE=90°,∴∠EAO=∠COF,又∵AO=CO,∠AEO=∠CFO,∴△AOE≌△OCF(AAS)∴OE=CF,AE=OF∴EF=AE+CF.【點睛】本題主要考查全等三角形的判定和性質,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性質(即全等三角形的對應邊相等、對應角相等)是解題的關鍵.23、(1)見解析;(2)1【分析】(1)連接OE,根據(jù)切線的性質得到OE⊥AB,根據(jù)平行線的性質得到∠BOC=∠EDO,∠BOE=∠DEO,根據(jù)全等三角形的性質得到∠OCB=∠OEB=90°,于是得到BC是⊙O的切線;(2)根據(jù)直角三角形的性質得到OD=DE=1,推出四邊形DOFE是平行四邊形,得到EF=OD=1.【詳解】(1)證明:連接OE,∵以CD為直徑的⊙O與邊AB相切于點E,∴OE⊥AB,∵DE∥OB,∴∠BOC=∠EDO,∠BOE=∠DEO,∵OE=OD,∴∠EDO=∠DEO,∴∠BOC=∠BOE,∵OB=OB,OC=OE,∴△OCB≌△OEB(SAS),∴∠OCB=∠OEB=90°,∴BC是⊙O的切線;(2)解:∵∠AEO=90°,AD=OD,∴ED=AO=OD,∴OD=DE=1,∵DE∥OF,DE=OD=OF,∴四邊形DOFE是平行四邊形,∴EF=OD=1,∴弦EF的長為1.【點睛】本題考查了切線的判定和性質,全等三角形的判定和性質,等腰三角形的性質,正確的作出輔助線是解題的關鍵.24、4株【分析】根據(jù)已知假設每盆花苗增加株,則每盆花苗有株,得出平均單株盈利為元,由題意得求出即可?!驹斀狻拷猓涸O每盆花苗增加株,則每盆花苗有株,平均單株盈利為:元,由題意得:.化簡,整理,.解這個方程,得,,則,,每盆植入株數(shù)盡可能少,盆應植4株.答:每盆應植4株.【點睛】此題考查了一元二次方程的應用,根據(jù)每盆花苗株數(shù)平均單株盈利總盈利得出方程是解題關鍵.25、(1)證明見解析;(2)證明見解析;(3)tan∠ACD=2﹣.【分析】(1)根據(jù)BM為切線,BC平分∠ABM,求得∠ABC的度數(shù),再由直徑所對的圓周角為直角,即可求證;(2)根據(jù)三角形相似的判定定理證明三角形相似,再由相似三角形對應邊成比例,即可求證;(3)由圖得到∠ACD=∠ABD,根據(jù)各個角之間的關系求出∠AFD的度數(shù),用AD表達出其它邊的邊長,再代入正切公式即可求得.【詳解】(1)∵BM是以AB為直徑的⊙O的切線,∴∠ABM=90°,∵BC平分∠ABM,∴∠ABC=∠ABM=45°∵AB是直徑∴∠ACB=90°,∴∠CAB=∠CBA=45°∴AC=BC∴△ACB是等腰直角三角形;(2)如圖,連接OD,OC∵DE=EO,DO=CO∴∠EDO=∠EOD,∠EDO=∠OCD∴∠EDO=∠EDO,∠EOD=∠OCD∴△EDO∽△ODC∴∴OD2=DEDC∴OA2=DEDC=EODC(3)如圖,連接BD,AD,DO,作∠BAF=∠DBA,交BD于點F,∵DO=BO∴∠ODB=∠OBD,∴∠AOD=2∠ODB=∠EDO,∵∠CAB=∠CD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- (完整版)生理學試題及答案400題
- 郵政招聘考試真題及答案
- vivo秋招試題及答案
- 單體電壓技師考試題庫及答案
- 車子駕駛證考試題庫及答案
- 中共臺州市路橋區(qū)委全面深化改革委員會辦公室關于公開選聘工作人員1人參考題庫必考題
- 中國金融出版社有限公司2026校園招聘4人考試備考題庫附答案
- 公主嶺市公安局2025年招聘警務輔助人員(150人)考試備考題庫必考題
- 南充市司法局2025年下半年公開遴選公務員(參公人員)公 告(2人)備考題庫必考題
- 吉水縣園區(qū)開發(fā)建設有限公司及下屬子公司2026年第一批面向社會公開招聘備考題庫附答案
- 2026年浙江高考語文真題試卷+答案
- 2025 年大學人工智能(AI 應用)期中測試卷
- 《市場營銷(第四版)》中職完整全套教學課件
- (正式版)DB61∕T 2121-2025 《風力發(fā)電場集電線路設計規(guī)范》
- 疑難病例討論制度落實常見問題與改進建議
- 創(chuàng)傷性脾破裂的護理
- 蓬深102井鉆井工程(重新報批)項目環(huán)境影響報告表
- 大模型金融領域可信應用參考框架
- (新教材)2025年人教版七年級上冊歷史期末復習??贾R點梳理復習提綱(教師版)
- 中國全色盲診療專家共識2026
- 中國地質大學武漢本科畢業(yè)論文格式
評論
0/150
提交評論