版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
Phase
Margin
and
Gain
MarginReview
of
Nyquist’s
Stability
Criterion22008-1-3由Nyquist穩(wěn)定判據(jù)可知:若已知系統(tǒng)的開環(huán)函數(shù)G(s)H(s),即可知開環(huán)的不穩(wěn)定極點數(shù)(位于S的右半平面)PR,在畫出該開環(huán)傳遞函數(shù)的極坐標(biāo)圖(Nyquist圖)之后,閉環(huán)系統(tǒng)的穩(wěn)定性則由Nyquist圖包圍點(-1,j0)的圈數(shù)N決定。閉環(huán)系統(tǒng)穩(wěn)定的充要條件是:位于S右半平面的極點數(shù)ZR為0:ZR=
PR-N。許多情況下,開環(huán)傳遞函數(shù)的某些系數(shù)發(fā)生變化時,Nyquist圖也隨之發(fā)生改變,閉環(huán)穩(wěn)定性也會發(fā)生變化。當(dāng)Nyquist圖穿過(-1,j0)點時,閉環(huán)系統(tǒng)臨界穩(wěn)定。穩(wěn)定性研究中,將(-1,j0)點稱為臨界點。Nyquist圖相對于該點的位置即偏離臨界點的程度,反映了系統(tǒng)的相對穩(wěn)定性。如果穩(wěn)定性不夠??--校正。Phase
Margin
and
Gain
Margin2008-1-3Outline
of
Chapter
7MapleIntroductionBode
Plots
(Logarithmic
plots)Direct
Polar
PlotsNyquist’s
Stability
Criterion-Part
1Nyquist’s
Stability
Criterion-Part
2Phase
Margin
and
Gain
Margin
and
Their
Relation
toStabilityStability
From
the
Nichols
PlotCompensation………Phase
Margin
and
Gain
MarginFrequency
Response5.
Phase
Margin
and
Gain
Margin
and
Their
Relation
to
StabilityThe
stability
and
approximate
degree
of
stability
can
be
determinedfrom
the
Lm
and
phase
diagram.
The
stability
characteristic
is
specifiedin
terms
of
the
following
ties.Gain
crossover(幅值穿越頻率--增益臨界點)This
is
the
point
on
the plot
of
the
transfer function
at
which
themagnitude
of
G(jω) is
unity
[LmG(jω)=0dB].
The
frequency
at
gain稱此為截止頻率crossover
is
called
the
phase-margin
frequency
ωΦ.(有中文ωC)Phase
margin
angle(相角)This
is
180°
plus
the
negative
trigonometrically
consider
angle
of
thetransfer
function
at
the
gain-crossover
point.
It
is
designated
as
the
angleγ,
which
can
be
expressed
as
γ=180°+Φ,
where
∠G(jωΦ)=Φ
isnegative.42008-1-3Phase
Margin
and
Gain
Margin-1ωΦωG(jω)γ(+)Φ-90°-135°-180°-225°ω→LmG(jω)0dBPhase
marginangle,
γ(+)ωΦ-270°The
polar
plot
of
G(jω)Log
magnitude
and
phase
diagram
of
G(jω)2008-1-3For
stable
systemγ=180°+Φ>0Frequency
Response5.
Phase
Margin
and
Gain
Margin
and
Their
Relation
to
StabilityPhase
Margin
and
Gain
MarginωG(jω)Φ-90°-135°-180°-225°ω→LmG(jω)Phase
marginangle,
γ(–)ωΦωΦγ(–)-1For
unstable
systemγ=180°+Φ<0-270°The
polar
plot
of
G(jω)Log
magnitude
and
phase
diagram
of
G(jω)2008-1-3Frequency
Response5.
Phase
Margin
and
Gain
Margin
and
Their
Relation
to
StabilityPhase
Margin
and
Gain
Margin5.
Phase
Margin
and
Gain
Margin
and
Their
Relation
to
StabilityThe
phase
margin
angle
is
the
amount
of
shift
at
the
frequency
ωΦthat
would
just
produce
instability.This
angle
would
make
the
polar
plot
go
through
the
–1
point.The
phase
margin
angle
for
minimum-phase
(m.p.)
systems
must
bepositive
for
a
stable
system,
whereas
a
negative
phase
margin
meansthat
the
system
is
unstable.The
phase
margin
angle
is
related
to
the
effective
dam ratio
ofthe
system.Satisfactory
response
is
usually
obtained
with
a
phasemargin
of45°
to
60°
.Frequency
Response72008-1-3Phase
Margin
and
Gain
Marginat
the
frequency
ωc
,
it
is5.
Phase
Margin
and
Gain
Margin
and
Their
Relation
to
StabilityPhase
crossover
(相位穿越頻率--相位臨界點)This
is
a
point
on
the
plot
of
the
transfer
function
at
which
the
phaseangle
is
-180°.
The
frequency
at
which
phase
crossover
occurs
is
calledthe
gain-margin
frequency
ωc.(有中文稱此為穿越頻率ωx)Gain
margin
(幅值
)The
gain
margin
is
the
factor
a
by
which
the
gain
must
be
changed
inorder
to
produce
instability.
Expressed
in
terms
of
the
transfer
functionG(
jc
)
a
1cOn
the
polar
plot
of
G(jω)
the
value
at
ω
isacG(
j
)
1In
terms
of
the
Lm,
in
decibels,
this
isLma
Lm
G(
jc
)Frequency
Response82008-1-3Phase
Margin
and
Gain
Marginω-1ωΦγ(+)ΦG(jω)For
stable
system-90°-135°-180°-225°-270°ω→ωΦPhase
marginangle,
γ(+)ωc1/aGainmargin,Lm
a
(+)ωcThe
polar
plot
of
G(jω)2008-1-3Log
magnitude
and
phase
diagram
of
G(jω)Lma
Lm
G(
jc
)
0LmG(jω)1/a
<
1,
a>1Frequency
Response5.
Phase
Margin
and
Gain
Margin
and
Their
Relation
to
StabilityPhase
Margin
and
Gain
Marginω-1
γ(–)Φ-90°-135°-180°-225°-270°ω→ωΦPhase
marginangle,
γ(–)G(jω)1/aωΦFor
unstable
systemωcωcGain
margin,Lm
a
(–)Lma
Lm
G(
jc
)
0
LmG(jω)The
polar
plot
of
G(jω)2008-1-3Log
magnitude
and
phase
diagram
of
G(jω)1/a
>1,
a<1Frequency
Response5.
Phase
Margin
and
Gain
Margin
and
Their
Relation
to
StabilityPhase
Margin
and
Gain
Margin0
(
)
(
180
0
)
(
)
180和由5.
Phase
Margin
and
Gain
Margin
and
Their
Relation
to
Stability相角
和幅值
的求解方法通常有三種求解系統(tǒng)相角
和幅值
的方法,即解析法、極坐標(biāo)圖法和伯德圖法。下面通過實例進(jìn)行說明。(一)
解析法根據(jù)系統(tǒng)的開環(huán)頻率特性,由G(
j
)H
(
j
)
1(0
)求出相角
。
)G
(
j
c
)
H
(
j
c
)
180
0
(0
c1G
(
j
c
)
H
(
j
c
)a
20
lg
a
20
lg
G
(
j
c
)
H
(
j
c
)求出幅值或Frequency
Response112008-1-3Phase
Margin
and
Gain
Margin相角
和幅值
的求解方法例7-20
已知最小相位系統(tǒng)的開環(huán)傳遞函數(shù)為40s(
s
2
2
s
25
)G
(
s)
H
(
s
)
40j
(
25
2
j
2
)試求出該系統(tǒng)的幅值
和相角
。解:系統(tǒng)的開環(huán)頻率特性為
G
(
j
)
H
(
j
)
其幅頻特性和相頻特性分別是40(
25
2
)
2
4
2G
(
j
)
H
(
j
)
1
2
25
2)
90
0
arctg
G
(
j
)
H
(
jccFrequency
Response5.
Phase
Margin
and
Gain
Margin
and
Their
Relation
to
Stability122008-1-3Phase
Margin
and
Gain
Margin5.
Phase
Margin
and
Gain
Margin
and
Their
Relation
to
Stability相角
和幅值
的求解方法令G
(j
)H
(j
)
1
,得
1.82令
1800G(
j
)H
(
j
),得
c
5
80.52
1.8225
1.822
180
G(
j
)H
(
j
)
90
arctga(dB)
20
lg1.25
1.94(dB)或
1.25a
1G(
jc
)H
(
jc
)即:該系統(tǒng)具有1.94分貝的幅值
,80.5度的相位
。Frequency
Response132008-1-3Phase
Margin
and
Gain
Margin5.
Phase
Margin
and
Gain
Margin
and
Their
Relation
to
Stability相角
和幅值
的求解方法(二)極坐標(biāo)圖法在GH平面上作出系統(tǒng)的開環(huán)頻率特性的極坐標(biāo)圖,并作一單位圓,由單位圓與開環(huán)頻率特性的交點A與坐標(biāo)原點的連線與負(fù)實軸的夾角求出相角
γ
;由開環(huán)頻率特性與負(fù)軸交點處的幅值的倒數(shù)得到幅值G
(
j
c
)
H
(
j
c
)a。1aImGH
0c1
01Rej
jA例7-20
的極坐標(biāo)圖Frequency
Response142008-1-3Phase
Margin
and
Gain
Margin1aImeGH
0c11RjA
j
0例7-20
的極坐標(biāo)圖在例7-20中,先作出系統(tǒng)的開環(huán)頻率特性曲線
,作單位圓交開環(huán)頻率特性曲線于A點,連接
OA,射線OA與負(fù)實軸的夾角即為系統(tǒng)的相角
80
0。開環(huán)頻率特性曲線與負(fù)實軸的交點坐標(biāo)為(0.8,
j0)由此得到系統(tǒng)的幅值
:10.8
1.25a
相角
和幅值
的求解方法(二)極坐標(biāo)圖法Frequency
Response5.
Phase
Margin
and
Gain
Margin
and
Their
Relation
to
Stability152008-1-3Phase
Margin
and
Gain
Margin,;反之,當(dāng),對應(yīng)的相頻特性位于–1800
線下方時 。
然后,由相頻率特性,求出對應(yīng)幅頻特性與,。a
0dB度γ。當(dāng)
對應(yīng)的相頻特性位于–1800
線上方時
00
0
0與-1800線的交點頻率c。反之,當(dāng)
c對應(yīng)的幅頻特性位于貝線上方a
0dB幅值
a
的分貝數(shù)。當(dāng)
c
對應(yīng)的幅頻特性位于貝線的差值,即為貝線下方時,5.
Phase
Margin
and
Gain
Margin
and
Their
Relation
to
Stability相角
和幅值
的求解方法(三)Bode圖法畫出系統(tǒng)的Bode圖,由開環(huán)對數(shù)幅頻特性與
貝線(即軸)的交點頻率
,求出對應(yīng)的相頻特性與-1800線的相移量,即為相角Frequency
Response162008-1-3Phase
Margin
and
Gain
Margin5.
Phase
Margin
and
Gain
Margin
and
Their
Relation
to
Stability相角
和幅值
的求解方法(三)Bode圖法例7-19的Bode圖如右圖所示。從圖中,可直接得到幅值穿越頻率相角穿越頻率相角
:幅值
:0
2
c
5
80a
2
dBdBLm()c52
20dB
/
dec1/
a
(dB)
60dB
/
dec度()
90
01800
2700例7-20Bode圖Frequency
Response172008-1-3Phase
Margin
and
Gain
Margin工程實踐中得到更為廣泛的應(yīng)用。c越頻率
和相位穿頻率
。同時Bode圖較極坐標(biāo)圖方便,因此在Frequency
Response5.
Phase
Margin
and
Gain
Margin
and
Their
Relation
to
Stability比較上述三種解法不難發(fā)現(xiàn):解析法
比較精確,但計算步驟復(fù)雜,而且對于三階以上的高階系統(tǒng),用解析法相當(dāng)
。圖解法
以極坐標(biāo)圖和Bode圖為基礎(chǔ)的圖解法,避免了繁鎖的計
算,具有簡便、直觀的優(yōu)點,對于高階系統(tǒng)尤為方便。不過圖解法是一種近似方法,所得結(jié)果有一定誤差,誤差的大小視作圖的準(zhǔn)確性而定。Bode圖法和極坐標(biāo)法雖然都是圖解法,但前者不僅可直接從Bode圖上獲得相角
和幅值
a
,而且還可直接得到相應(yīng)的幅值穿182008-1-3Phase
Margin
and
Gain
MarginPhase
Margin
and
Gain
Margin
and
Their
Relation
to
Stability注意:對于非最小相位系統(tǒng),不能簡單地用系統(tǒng)的相角
和幅值 的大小來判斷系統(tǒng)的穩(wěn)定性。但對于最小相位系統(tǒng)以相角
>0
和幅值
a>1(或a
(dB)>0)作為系統(tǒng)穩(wěn)定的充要條件是可靠的。Frequency
Response192008-1-32008-1-3Phase
Margin
and
Gain
Margins
(Ts
1)G
(
s
)
H
(
s
)
K
(
s
1)例7-21
已知非最小相位系統(tǒng)的開環(huán)傳遞函數(shù)為試分析該系統(tǒng)的穩(wěn)定性及其與系統(tǒng)穩(wěn)定之間的關(guān)系。解
在一定的K值條件下,系統(tǒng)的開環(huán)頻率特性如右圖所示。由于該系統(tǒng)有一個為于S右半部平面的開環(huán)極點PR=1
,奈氏曲線順時針包圍(-1,j0)
點一周(N=1),根據(jù)奈氏判據(jù),該系統(tǒng)為穩(wěn)定系統(tǒng)。但由圖解法求出該系統(tǒng)的相角
>0,幅值
a<1,這說明以相角
>0
和幅值a>1作為判別非最小相位系統(tǒng)穩(wěn)定性的依據(jù)是不可靠的。c00
1aj
j
11Re0
例7-21極坐標(biāo)圖>0Frequency
Response5.
Phase
Margin
and
Gain
Margin
and
Their
Relation
to
StabilityPhase
Margin
and
Gain
Margin5.
Phase
Margin
and
Gain
Margin
and
Their
Relation
to
StabilityThe
gain
margin
must
be
positive
when
expressed
in
decibels(greater
than
unityasa
numeric)
for
a
stable
system.
A
negative
gainmargin
means
that
the
system
is
unstable.Themargin.damdam
ratio
of
the
system
is
also
related
to
the
gainHowever,
the
phase
margin
gives
a
better
estimate
ofratio,
and
therefore
of
the
transient
overshoot
of
thesystem,than
the
gain
margin.Frequency
Response212008-1-3222008-1-3Phase
Margin
and
Gain
Margin5.
Phase
Margin
and
Gain
Margin
and
Their
Relation
to
StabilityThe
asymptotes
of
the
Lm
vs
curve
are
related
to
eachfactor
ofthe
transfer
function.
For
example,
factors
of
the
(1+j
)-1
have
anegative
slope
–20dB/decade
at
high
frequencies.The
total
phase
angle
of
the
transfer
function
at
any
frequency
isclosely
related
to
the
slope
of
the
Lm
vs
curve
at
that
frequency.For
example,
a
slope
of
–20dB/decade
is
related
to
an
angle
of
-90°.By
observing
the
asymptotes
of
the
Lm
vs
curve,
it
is
possible
toestimate
the
approximate
value
of
the
angle.
Changes
of
slope
athigher
and
lower
corner
frequencies,
around
the
particularfrequency
being
considered.
The
farther
away
the
changes
of
slopeare
from
the
particular
frequency,
the
less
contribute
to
the
totalangle
at
that
frequency.
For
example,
Fig.
8.7.
=4.(P258)Frequency
Response232008-1-3Phase
Margin
and
Gain
Margin5.
Phase
Margin
and
Gain
Margin
and
Their
Relation
to
StabilityAs
we
have
seen,
the
stability
of
an
m.p.
system
requires
that
thephase
margin
angle
be
positive.,
i.e.
the
angle
at
the
gaincrossover
[Lm
G(j
)=0]
must
be
greater
than
-180°.
Thisrequirement
places
a
limit
on
the
slope
of
the
Lm
curve
at
thegain
crossover.
The
slope
at
that
frequency
should
be
morepositive
than
–40dB/decade
if
the
adjacent
corner
frequencies
arenot
close.
And
a
slope
of
–20dB/decade
is
preferable.Just
like
root
locus
method,
the
Log
magnitude
and
phase
diagramcan
be
aided
system
design.Frequency
ResponsePhase
Margin
and
Gain
Margin5.
Phase
Margin
and
Gain
Margin
and
Their
Relation
to
StabilityFor
example:The
gain
can
be
adjusted
(which
raises
or
lowers
the
Lm
curve)
toproduce
a
phase
margin
angle
in
the
desirable
range
of
45o
to
60o.The
sh
of
the
low-frequency
portion
of
the
curve
determinesystem
type
and
therefore
the
degree
of
steady-state
accuracy.The
system
type
and
the
gain
determine
the
error
coefficients
andtherefore
the
steady-state
error.The
phase-margin
frequency
ωΦ
gives
a
qualitative
indication
ofspeed
of
response
of
a
system.Frequency
Response242008-1-3252008-1-3Phase
Margin
and
Gain
Margin6.Stability
from
the
Nichols
plot
(Log
Magnitude-Angle
Diagram)The
Lm-angle
diagram
(Nichols
plot)
is
drawn
by
picking
for
eachfrequency
the
values
of
Lm
and
angle
from
the
Lm
and
phasediagram
.
The
resultant
curve
has
frequency
as
a
parameter.The
curve
for
the
example
of
Sec.8.7,
sketched
in
Fig.8.35,
shows
apositive
gain
margin
and
phase
margin
angle,
this
represents
astable
system.Changing
the
gain
raises
or
lowers
the
curve
without
changing
theangle
characteristics.
Increasing
the
gain
raises
the
curve,
therebydecreasing
the
gain
margin
and
phase
margin
angle,
with
theresult
that
the
stability
is
decreased………may
be
result
in
systemunstable
(See
slide
7-5(2)
Ex.7-19)
.Frequency
ResponsePhase
Margin
and
Gain
MarginFrequency
Response6.Stability
from
the
Nichols
plot
(LogMagnitude-Angle
Diagram)Phase
Margin
and
Gain
Margin6.Stability
from
the
Nichols
plot
(Log
Magnitude-Angle
Diagram)The
Lm-angle
diagram
(Nichols
plot)
f (s)H(s)
can
be
drawnfor
all
values
o the
contour
Q
of
Fig.
8.26a.
The
resultantcurve
for
m.p.
systems
is
a
closed
contour.
Nyquist’s
criterion
canbe
applied
to
this
contour….:
ZR=N-PR----???In
the
case
of
m.p.
systems,
it
is
not
necessary
to
obtain
the
completeLm-angle
contour
to
determine
stability.
Only
the
positive
frequencyis
needed
to
draw.
The
system
is
stable
if
the
(0dB,-180o)
point
is
tothe
right
of
the
curve.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年大學(xué)港口航道與海岸工程(港口航道設(shè)計)試題及答案
- 2025年高職網(wǎng)絡(luò)安全技術(shù)(技術(shù)實操訓(xùn)練)試題及答案
- 2025年中職城市軌道交通運營服務(wù)(行車組織)試題及答案
- 2025年中職(中醫(yī)基礎(chǔ))經(jīng)絡(luò)識別階段測試試題及答案
- 禁吸戒毒業(yè)務(wù)培訓(xùn)課件
- 2025 小學(xué)二年級科學(xué)上冊認(rèn)識蝌蚪的四肢生長課件
- 光伏質(zhì)量培訓(xùn)課件教學(xué)
- 2025年半年度可持續(xù)金融報告
- 云南省部分學(xué)校2025-2026學(xué)年七年級上學(xué)期期中歷史試題(含答案)
- 2026山東菏澤曹州醫(yī)院招聘備考題庫及答案詳解一套
- 初中語文仿寫訓(xùn)練
- 老同學(xué)聚會群主的講話發(fā)言稿
- 天然氣輸氣管線陰極保護施工方案
- 高血壓問卷調(diào)查表
- QC成果提高花崗巖磚鋪裝質(zhì)量
- YS/T 416-2016氫氣凈化用鈀合金管材
- GB/T 25156-2010橡膠塑料注射成型機通用技術(shù)條件
- GB/T 20878-2007不銹鋼和耐熱鋼牌號及化學(xué)成分
- 第六章 亞洲 第一節(jié) 概述
- 第六單元作文素材:批判與觀察 高一語文作文 (統(tǒng)編版必修下冊)
- 全新版尹定邦設(shè)計學(xué)概論1課件
評論
0/150
提交評論