2022屆三門峽市重點中學高考數(shù)學倒計時模擬卷含解析_第1頁
2022屆三門峽市重點中學高考數(shù)學倒計時模擬卷含解析_第2頁
2022屆三門峽市重點中學高考數(shù)學倒計時模擬卷含解析_第3頁
2022屆三門峽市重點中學高考數(shù)學倒計時模擬卷含解析_第4頁
2022屆三門峽市重點中學高考數(shù)學倒計時模擬卷含解析_第5頁
免費預覽已結束,剩余16頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022年高考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.2019年末,武漢出現(xiàn)新型冠狀病毒肺炎()疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強化網(wǎng)格化管理,不落一戶、不漏一人.在排查期間,一戶6口之家被確認為“與確診患者的密切接觸者”,這種情況下醫(yī)護人員要對其家庭成員隨機地逐一進行“核糖核酸”檢測,若出現(xiàn)陽性,則該家庭為“感染高危戶”.設該家庭每個成員檢測呈陽性的概率均為()且相互獨立,該家庭至少檢測了5個人才能確定為“感染高危戶”的概率為,當時,最大,則()A. B. C. D.2.已知為虛數(shù)單位,若復數(shù),,則A. B.C. D.3.已知命題,,則是()A., B.,.C., D.,.4.已知雙曲線的一條漸近線傾斜角為,則()A.3 B. C. D.5.已知函數(shù),若關于的不等式恰有1個整數(shù)解,則實數(shù)的最大值為()A.2 B.3 C.5 D.86.已知復數(shù)滿足,其中為虛數(shù)單位,則().A. B. C. D.7.以下三個命題:①在勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進行某項指標檢測,這樣的抽樣是分層抽樣;②若兩個變量的線性相關性越強,則相關系數(shù)的絕對值越接近于1;③對分類變量與的隨機變量的觀測值來說,越小,判斷“與有關系”的把握越大;其中真命題的個數(shù)為()A.3 B.2 C.1 D.08.洛書,古稱龜書,是陰陽五行術數(shù)之源,在古代傳說中有神龜出于洛水,其甲殼上心有此圖象,結構是戴九履一,左三右七,二四為肩,六八為足,以五居中,五方白圈皆陽數(shù),四角黑點為陰數(shù).如圖,若從四個陰數(shù)和五個陽數(shù)中分別隨機選取1個數(shù),則其和等于11的概率是().A. B. C. D.9.如圖是2017年第一季度五省GDP情況圖,則下列陳述中不正確的是()A.2017年第一季度GDP增速由高到低排位第5的是浙江省.B.與去年同期相比,2017年第一季度的GDP總量實現(xiàn)了增長.C.2017年第一季度GDP總量和增速由高到低排位均居同一位的省只有1個D.去年同期河南省的GDP總量不超過4000億元.10.運行如圖程序,則輸出的S的值為()A.0 B.1 C.2018 D.201711.已知向量與向量平行,,且,則()A. B.C. D.12.已知,,為圓上的動點,,過點作與垂直的直線交直線于點,若點的橫坐標為,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若,則____.14.已知是同一球面上的四個點,其中平面,是正三角形,,則該球的表面積為______.15.曲線在點處的切線方程為________.16.已知復數(shù),其中為虛數(shù)單位,則的模為_______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C:(a>b>0)過點(0,),且滿足a+b=3.(1)求橢圓C的方程;(2)若斜率為的直線與橢圓C交于兩個不同點A,B,點M坐標為(2,1),設直線MA與MB的斜率分別為k1,k2,試問k1+k2是否為定值?并說明理由.18.(12分)某藝術品公司欲生產(chǎn)一款迎新春工藝禮品,該禮品是由玻璃球面和該球的內(nèi)接圓錐組成,圓錐的側面用于藝術裝飾,如圖1.為了便于設計,可將該禮品看成是由圓及其內(nèi)接等腰三角形繞底邊上的高所在直線旋轉180°而成,如圖2.已知圓的半徑為,設,圓錐的側面積為.(1)求關于的函數(shù)關系式;(2)為了達到最佳觀賞效果,要求圓錐的側面積最大.求取得最大值時腰的長度.19.(12分)已知數(shù)列為公差不為零的等差數(shù)列,是數(shù)列的前項和,且、、成等比數(shù)列,.設數(shù)列的前項和為,且滿足.(1)求數(shù)列、的通項公式;(2)令,證明:.20.(12分)如圖,在四面體中,.(1)求證:平面平面;(2)若,二面角為,求異面直線與所成角的余弦值.21.(12分)已知拋物線Γ:y2=2px(p>0)的焦點為F,P是拋物線Γ上一點,且在第一象限,滿足(2,2)(1)求拋物線Γ的方程;(2)已知經(jīng)過點A(3,﹣2)的直線交拋物線Γ于M,N兩點,經(jīng)過定點B(3,﹣6)和M的直線與拋物線Γ交于另一點L,問直線NL是否恒過定點,如果過定點,求出該定點,否則說明理由.22.(10分)設函數(shù).(1)當時,求不等式的解集;(2)當時,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

根據(jù)題意分別求出事件A:檢測5個人確定為“感染高危戶”發(fā)生的概率和事件B:檢測6個人確定為“感染高危戶”發(fā)生的概率,即可得出的表達式,再根據(jù)基本不等式即可求出.【詳解】設事件A:檢測5個人確定為“感染高危戶”,事件B:檢測6個人確定為“感染高危戶”,∴,.即設,則∴當且僅當即時取等號,即.故選:A.【點睛】本題主要考查概率的計算,涉及相互獨立事件同時發(fā)生的概率公式的應用,互斥事件概率加法公式的應用,以及基本不等式的應用,解題關鍵是對題意的理解和事件的分解,意在考查學生的數(shù)學運算能力和數(shù)學建模能力,屬于較難題.2.B【解析】

由可得,所以,故選B.3.B【解析】

根據(jù)全稱命題的否定為特稱命題,得到結果.【詳解】根據(jù)全稱命題的否定為特稱命題,可得,本題正確選項:【點睛】本題考查含量詞的命題的否定,屬于基礎題.4.D【解析】

由雙曲線方程可得漸近線方程,根據(jù)傾斜角可得漸近線斜率,由此構造方程求得結果.【詳解】由雙曲線方程可知:,漸近線方程為:,一條漸近線的傾斜角為,,解得:.故選:.【點睛】本題考查根據(jù)雙曲線漸近線傾斜角求解參數(shù)值的問題,關鍵是明確直線傾斜角與斜率的關系;易錯點是忽略方程表示雙曲線對于的范圍的要求.5.D【解析】

畫出函數(shù)的圖象,利用一元二次不等式解法可得解集,再利用數(shù)形結合即可得出.【詳解】解:函數(shù),如圖所示當時,,由于關于的不等式恰有1個整數(shù)解因此其整數(shù)解為3,又∴,,則當時,,則不滿足題意;當時,當時,,沒有整數(shù)解當時,,至少有兩個整數(shù)解綜上,實數(shù)的最大值為故選:D【點睛】本題主要考查了根據(jù)函數(shù)零點的個數(shù)求參數(shù)范圍,屬于較難題.6.A【解析】

先化簡求出,即可求得答案.【詳解】因為,所以所以故選:A【點睛】此題考查復數(shù)的基本運算,注意計算的準確度,屬于簡單題目.7.C【解析】

根據(jù)抽樣方式的特征,可判斷①;根據(jù)相關系數(shù)的性質(zhì),可判斷②;根據(jù)獨立性檢驗的方法和步驟,可判斷③.【詳解】①根據(jù)抽樣是間隔相同,且樣本間無明顯差異,故①應是系統(tǒng)抽樣,即①為假命題;②兩個隨機變量相關性越強,則相關系數(shù)的絕對值越接近于1;兩個隨機變量相關性越弱,則相關系數(shù)的絕對值越接近于0;故②為真命題;③對分類變量與的隨機變量的觀測值來說,越小,“與有關系”的把握程度越小,故③為假命題.故選:.【點睛】本題以命題的真假判斷為載體考查了抽樣方法、相關系數(shù)、獨立性檢驗等知識點,屬于基礎題.8.A【解析】

基本事件總數(shù),利用列舉法求出其和等于11包含的基本事件有4個,由此能求出其和等于11的概率.【詳解】解:從四個陰數(shù)和五個陽數(shù)中分別隨機選取1個數(shù),基本事件總數(shù),其和等于11包含的基本事件有:,,,,共4個,其和等于的概率.故選:.【點睛】本題考查概率的求法,考查古典概型等基礎知識,考查運算求解能力,屬于基礎題.9.C【解析】

利用圖表中的數(shù)據(jù)進行分析即可求解.【詳解】對于A選項:2017年第一季度5省的GDP增速由高到低排位分別是:江蘇、遼寧、山東、河南、浙江,故A正確;對于B選項:與去年同期相比,2017年第一季度5省的GDP均有不同的增長,所以其總量也實現(xiàn)了增長,故B正確;對于C選項:2017年第一季度GDP總量由高到低排位分別是:江蘇、山東、浙江、河南、遼寧,2017年第一季度5省的GDP增速由高到低排位分別是:江蘇、遼寧、山東、河南、浙江,均居同一位的省有2個,故C錯誤;對于D選項:去年同期河南省的GDP總量,故D正確.故選:C.【點睛】本題考查了圖表分析,學生的分析能力,推理能力,屬于基礎題.10.D【解析】

依次運行程序框圖給出的程序可得第一次:,不滿足條件;第二次:,不滿足條件;第三次:,不滿足條件;第四次:,不滿足條件;第五次:,不滿足條件;第六次:,滿足條件,退出循環(huán).輸出1.選D.11.B【解析】

設,根據(jù)題意得出關于、的方程組,解出這兩個未知數(shù)的值,即可得出向量的坐標.【詳解】設,且,,由得,即,①,由,②,所以,解得,因此,.故選:B.【點睛】本題考查向量坐標的求解,涉及共線向量的坐標表示和向量數(shù)量積的坐標運算,考查計算能力,屬于中等題.12.A【解析】

由題意得,即可得點M的軌跡為以A,B為左、右焦點,的雙曲線,根據(jù)雙曲線的性質(zhì)即可得解.【詳解】如圖,連接OP,AM,由題意得,點M的軌跡為以A,B為左、右焦點,的雙曲線,.故選:A.【點睛】本題考查了雙曲線定義的應用,考查了轉化化歸思想,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由,得出,根據(jù)兩角和與差的正弦公式和余弦公式化簡,再利用齊次式即可求出結果.【詳解】因為,所以,所以.故答案為:.【點睛】本題考查三角函數(shù)化簡求值,利用二倍角正切公式、兩角和與差的正弦公式和余弦公式,以及運用齊次式求值,屬于對公式的考查以及對計算能力的考查.14.【解析】

求得等邊三角形的外接圓半徑,利用勾股定理求得三棱錐外接球的半徑,進而求得外接球的表面積.【詳解】設是等邊三角形的外心,則球心在其正上方處.設,由正弦定理得.所以得三棱錐外接球的半徑,所以外接球的表面積為.故答案為:【點睛】本小題主要考查幾何體外接球表面積的計算,屬于基礎題.15.【解析】

求導,得到和,利用點斜式即可求得結果.【詳解】由于,,所以,由點斜式可得切線方程為.故答案為:.【點睛】本題考查利用導數(shù)的幾何意義求切線方程,屬基礎題.16.【解析】

利用復數(shù)模的計算公式求解即可.【詳解】解:由,得,所以.故答案為:.【點睛】本題考查復數(shù)模的求法,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)k1+k2為定值0,見解析【解析】

(1)利用已知條件直接求解,得到橢圓的方程;(2)設直線在軸上的截距為,推出直線方程,然后將直線與橢圓聯(lián)立,設,利用韋達定理求出,然后化簡求解即可.【詳解】(1)由橢圓過點(0,),則,又a+b=3,所以,故橢圓的方程為;(2),證明如下:設直線在軸上的截距為,所以直線的方程為:,由得:,由得,設,則,所以,又,所以,故.【點睛】本題主要考查了橢圓的標準方程的求解,直線與橢圓的位置關系的綜合應用,考查了方程的思想,轉化與化歸的思想,考查了學生的運算求解能力.18.(1),(2)側面積取得最大值時,等腰三角形的腰的長度為【解析】試題分析:(1)由條件,,,所以S,;(2)令,所以得,通過求導分析,得在時取得極大值,也是最大值.試題解析:(1)設交于點,過作,垂足為,在中,,,在中,,所以S,(2)要使側面積最大,由(1)得:令,所以得,由得:當時,,當時,所以在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,所以在時取得極大值,也是最大值;所以當時,側面積取得最大值,此時等腰三角形的腰長答:側面積取得最大值時,等腰三角形的腰的長度為.19.(1),(2)證明見解析【解析】

(1)利用首項和公差構成方程組,從而求解出的通項公式;由的通項公式求解出的表達式,根據(jù)以及,求解出的通項公式;(2)利用錯位相減法求解出的前項和,根據(jù)不等關系證明即可.【詳解】(1)設首項為,公差為.由題意,得,解得,∴,∴,∴當時,∴,.當時,滿足上式.∴(2),令數(shù)列的前項和為.兩式相減得∴恒成立,得證.【點睛】本題考查等差數(shù)列、等比數(shù)列的綜合應用,難度一般.(1)當用求解的通項公式時,一定要注意驗證是否成立;(2)當一個數(shù)列符合等差乘以等比的形式,優(yōu)先考慮采用錯位相減法進行求和,同時注意對于錯位的理解.20.(1)證明見解析(2)【解析】

(1)取中點連接,得,可得,可證,可得,進而平面,即可證明結論;(2)設分別為邊的中點,連,可得,,可得(或補角)是異面直線與所成的角,,可得,為二面角的平面角,即,設,求解,即可得出結論.【詳解】(1)證明:取中點連接,由則,則,故,,平面,又平面,故平面平面(2)解法一:設分別為邊的中點,則,(或補角)是異面直線與所成的角.設為邊的中點,則,由知.又由(1)有平面,平面,所以為二面角的平面角,,設則在中,從而在中,,又,從而在中,因,,因此,異面直線與所成角的余弦值為.解法二:過點作交于點由(1)易知兩兩垂直,以為原點,射線分別為軸,軸,軸的正半軸,建立空間直角坐標系.不妨設,由,易知點的坐標分別為則顯然向量是平面的法向量已知二面角為,設,則設平面的法向量為,則令,則由由上式整理得,解之得(舍)或,因此,異面直線與所成角的余弦值為.【點睛】本題考查空間點、線、面位置關系,證明平面與平面垂直,考查空間角,涉及到二面角、異面直線所成的角,做出空間角對應的平面角是解題的關鍵,或用空間向量法求角,意在考查直觀想象、邏輯推理、數(shù)學計算能力,屬于中檔題.21.(1)y2=4x;;(2)直線NL恒過定點(﹣3,0),理由見解析.【解析】

(1)根據(jù)拋物線的方程,求得焦點F(,0),利用(2,2),表示點P的坐標,再代入拋物線方程求解.(2)設M(x0,y0),N(x1,y1),L(x2,y2),表示出MN的方程y和ML的方程y,因為A(3,﹣2),B(3,﹣6)在這兩條直線上,分別代入兩直線的方程可得y1y2=12,然后表示直線NL的方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論