2023屆湖南省長沙市芙蓉區(qū)長郡芙蓉中學數(shù)學九年級上冊期末達標檢測試題含解析_第1頁
2023屆湖南省長沙市芙蓉區(qū)長郡芙蓉中學數(shù)學九年級上冊期末達標檢測試題含解析_第2頁
2023屆湖南省長沙市芙蓉區(qū)長郡芙蓉中學數(shù)學九年級上冊期末達標檢測試題含解析_第3頁
2023屆湖南省長沙市芙蓉區(qū)長郡芙蓉中學數(shù)學九年級上冊期末達標檢測試題含解析_第4頁
2023屆湖南省長沙市芙蓉區(qū)長郡芙蓉中學數(shù)學九年級上冊期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.如圖,在平面直角坐標系中,在軸上,,點的坐標為,繞點逆時針旋轉,得到,若點的對應點恰好落在反比例函數(shù)的圖像上,則的值為()A.4. B.3.5 C.3. D.2.52.向陽村年的人均收入為萬元,年的人均收入為萬元.設年平均增長率為,根據題意,可列出方程為()A. B. C. D.3.五糧液集團2018年凈利潤為400億元,計劃2020年凈利潤為640億元,設這兩年的年凈利潤平均增長率為x,則可列方程是()A. B.C. D.4.圓的直徑是13cm,如果圓心與直線上某一點的距離是6.5cm,那么該直線和圓的位置關系是()A.相離 B.相切 C.相交 D.相交或相切5.一個圓錐的側面積是底面積的4倍,則圓錐側面展開圖的扇形的圓心角是A.60° B.90° C.120° D.180°6.如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點A順時針方向旋轉60°得到△A′B′C′的位置,連接C′B,則C′B的長為()A.2- B. C. D.17.已知菱形的邊長為,若對角線的長為,則菱形的面積為()A. B. C. D.8.如圖,在直角坐標系中,點A是x軸正半軸上的一個定點,點B是雙曲線y=(x>0)上的一個動點,當點B的橫坐標系逐漸增大時,△OAB的面積將會()A.逐漸變小 B.逐漸增大 C.不變 D.先增大后減小9.若,,則以為根的一元二次方程是()A. B.C. D.10.關于的一元二次方程根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.有一個實數(shù)根 D.沒有實數(shù)根二、填空題(每小題3分,共24分)11.已知三角形的兩邊分別是3和4,第三邊的數(shù)值是方程x2﹣9x+14=0的根,則這個三角形的周長為_____.12.已知圓錐的底面半徑是3cm,母線長是5cm,則圓錐的側面積為_____cm1.(結果保留π)13.已知等邊△ABC的邊長為4,點P是邊BC上的動點,將△ABP繞點A逆時針旋轉60°得到△ACQ,點D是AC邊的中點,連接DQ,則DQ的最小值是_____.14.下面是“用三角板畫圓的切線”的畫圖過程.如圖1,已知圓上一點A,畫過A點的圓的切線.畫法:(1)如圖2,將三角板的直角頂點放在圓上任一點C(與點A不重合)處,使其一直角邊經過點A,另一條直角邊與圓交于B點,連接AB;(2)如圖3,將三角板的直角頂點與點A重合,使一條直角邊經過點B,畫出另一條直角邊所在的直線AD.所以直線AD就是過點A的圓的切線.請回答:該畫圖的依據是______________________________________.15.超市決定招聘一名廣告策劃人員,某應聘者三項素質測試的成績如下表:測試項目創(chuàng)新能力綜合知識語言表達測試成績/分將創(chuàng)新能力,綜合知識和語言表達三項測試成績按的比例計入總成績,則該應聘者的總成績是__________分.16.如圖,用一張半徑為10cm的扇形紙板做一個圓錐形帽子(接縫忽略不計),如果做成的圓錐形帽子的高為8cm,那么這張扇形紙板的弧長是________cm.17.如圖,在Rt△ABC中,∠ACB=90°,D、E、F分別是AB、BC、CA的中點,若CD=5cm,則EF=_______cm.18.如圖,直線軸于點,且與反比例函數(shù)()及()的圖象分別交于、兩點,連接、,已知的面積為4,則________.三、解答題(共66分)19.(10分)某商店進行促銷活動,如果將進價為8元/件的商品按每件10元出售,每天可銷售100件,現(xiàn)采用提高售價,減少進貨量的辦法增加利潤,已知這種商品的單價每漲1元,其銷售量就要減少10件,問將售價定為多少元/件時,才能使每天所賺的利潤最大.并求出最大利潤.20.(6分)計算.21.(6分)如圖,天星山山腳下西端A處與東端B處相距800(1+)米,小軍和小明同時分別從A處和B處向山頂C勻速行走.已知山的西端的坡角是45°,東端的坡角是30°,小軍的行走速度為米/秒.若小明與小軍同時到達山頂C處,則小明的行走速度是多少?22.(8分)如圖,C城市在A城市正東方向,現(xiàn)計劃在A、C兩城市間修建一條高速鐵路(即線段AC),經測量,森林保護區(qū)的中心P在城市A的北偏東60°方向上,在線段AC上距A城市150km的B處測得P在北偏東30°方向上,已知森林保護區(qū)是以點P為圓心,120km為半徑的圓形區(qū)域,請問計劃修建的這條高速鐵路是否穿越保護區(qū),為什么?(參考數(shù)據:≈1.732)23.(8分)如圖,是的角平分線,延長到,使.(1)求證:.(2)若,,,求的長.24.(8分)已知四邊形ABCD中,E,F(xiàn)分別是AB,AD邊上的點,DE與CF相交于點G.(1)如圖①,若四邊形ABCD是矩形,且DE⊥CF,求證:.(2)如圖②,若四邊形ABCD是平行四邊形,要使成立,完成下列探究過程:要使,轉化成,顯然△DEA與△CFD不相似,考慮,需要△DEA∽△DFG,只需∠A=∠________;另一方面,只要,需要△CFD∽△CDG,只需∠CGD=∠________.由此探究出使成立時,∠B與∠EGC應該滿足的關系是________.(3)如圖③,若AB=BC=6,AD=CD=8,∠BAD=90°,DE⊥CF,那么的值是多少?(直接寫出結果)25.(10分)如圖,△ABC是邊長為2的等邊三角形,點D與點B分別位于直線AC的兩側,且AD=AC,聯(lián)結BD、CD,BD交直線AC于點E.(1)當∠CAD=90°時,求線段AE的長.(2)過點A作AH⊥CD,垂足為點H,直線AH交BD于點F,①當∠CAD<120°時,設,(其中表示△BCE的面積,表示△AEF的面積),求y關于x的函數(shù)關系式,并寫出x的取值范圍;②當時,請直接寫出線段AE的長.26.(10分)如圖,點B,E,C,F(xiàn)在一條直線上,AB=DE,AC=DF,BE=CF,求證:∠A=∠D.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】先通過條件算出O’坐標,代入反比例函數(shù)求出k即可.【詳解】由題干可知,B點坐標為(1,0),旋轉90°后,可知B’坐標為(3,2),O’坐標為(3,1).∵雙曲線經過O’,∴1=,解得k=3.故選C.【點睛】本題考查反比例函數(shù)圖象與性質,關鍵在于坐標平面內的圖形變換找出關鍵點坐標.2、A【分析】設年平均增長率為,根據:2017年的人均收入×1+增長率=年的人均收入,列出方程即可.【詳解】設設年平均增長率為,根據題意,得:,故選:A.【點睛】本題主要考查一元二次方程的應用,解題關鍵是要讀懂題目的意思,根據題目給出的條件,找出合適的等量關系,列出方程.3、B【分析】根據平均年增長率即可解題.【詳解】解:設這兩年的年凈利潤平均增長率為x,依題意得:故選B.【點睛】本題考查了一元二次方程的實際應用,屬于簡單題,熟悉平均年增長率概念是解題關鍵.4、D【分析】比較圓心到直線距離與圓半徑的大小關系,進行判斷即可.【詳解】圓的直徑是13cm,故半徑為6.5cm.圓心與直線上某一點的距離是6.5cm,那么圓心到直線的距離可能等于6.5cm也可能小于6.5cm,因此直線與圓相切或相交.故選D.【點睛】本題主要考查直線與圓的位置關系,需注意圓的半徑為6.5cm,那么圓心與直線上某一點的距離是6.5cm是指圓心到直線的距離可能等于6.5cm也可能小于6.5cm.5、B【解析】試題分析:設母線長為R,底面半徑為r,∴底面周長=2πr,底面面積=πr2,側面面積=πrR,∵側面積是底面積的4倍,∴4πr2=πrR.∴R=4r.∴底面周長=πR.∵圓錐的底面周長等于它的側面展開圖的弧長,∴設圓心角為n°,有,∴n=1.故選B.6、C【分析】如圖,連接BB′,延長BC′交AB′于點D,證明△ABC′≌△B′BC′,得到∠DBB′=∠DBA=30°;求出BD、C′D的長,即可解決問題.【詳解】解:如圖,連接BB′,延長BC′交AB′于點D,

由題意得:∠BAB′=60°,BA=B′A,

∴△ABB′為等邊三角形,

∴∠ABB′=60°,AB=B′B;

在△ABC′與△B′BC′中,∴△ABC′≌△B′BC′(SSS),

∴∠DBB′=∠DBA=30°,

∴BD⊥AB′,且AD=B′D,∵AC=BC=,∴,∴,,,.故選:C.【點睛】本題考查旋轉的性質,全等三角形的性質和判定,等邊三角形的判定與性質,等腰直角三角形的性質,直角三角形斜邊上的中線.作輔助線構造出全等三角形并求出BC′在等邊三角形的高上是解題的關鍵,也是本題的難點.7、B【分析】先求出對角線AC的長度,再根據“菱形的面積等于對角線乘積的一半”,即可得出答案.【詳解】根據題意可得:AB=BC=CD=AD=13cm,BD=10cm∵ABCD為菱形∴BD⊥AC,BO=DO=AO=AC=2AO=24cm∴故答案選擇B.【點睛】本題考查的是菱形,難度適中,需要熟練掌握菱形面積的兩種求法.8、A【解析】試題分析:根據反比例函數(shù)的性質結合圖形易知△OAB的高逐漸減小,再結合三角形的面積公式即可判斷.要知△OAB的面積的變化,需考慮B點的坐標變化,因為A點是一定點,所以OA(底)的長度一定,而B是反比例函數(shù)圖象上的一點,當它的橫坐標不斷增大時,根據反比例函數(shù)的性質可知,函數(shù)值y隨自變量x的增大而減小,即△OAB的高逐漸減小,故選A.考點:反比例函數(shù)的性質,三角形的面積公式點評:本題屬于基礎應用題,只需學生熟練掌握反比例函數(shù)的性質,即可完成.9、B【分析】由已知條件可得出,再根據一元二次方程的根與系數(shù)的關系,,分別得出四個方程的兩個根的和與積,即可得出答案.【詳解】解:∵,∴A.,方程的兩個根的和為-3,積為-2,選項錯誤;B.,方程的兩個根的和為3,積為2,選項正確;C.,方程的兩個根的和為-3,積為2,選項錯誤;D.,方程的兩個根的和為3,積為-2,選項錯誤;故選:B.【點睛】本題考查的知識點是根與系數(shù)的關鍵,熟記求根公式是解此題的關鍵.10、A【分析】先寫出的值,計算的值進行判斷.【詳解】

方程有兩個不相等的實數(shù)根故選A【點睛】本題考查一元二次方程根的判別式,是常見考點,當時,方程有兩個不相等的實數(shù)根;當時,方程有兩個相等的實數(shù)根;當時,方程沒有實數(shù)根,熟記公式并靈活應用公式是解題關鍵.二、填空題(每小題3分,共24分)11、1.【分析】求出方程的解,再看看是否符合三角形三邊關系定理即可解答.【詳解】∵x2﹣1x+14=0,∴(x﹣2)(x﹣7)=0,則x﹣2=0或x﹣7=0,解得x=2或x=7,當x=2時,三角形的周長為2+3+4=1;當x=7時,3+4=7,不能構成三角形;故答案為:1.【點睛】本題考查解一元二次方程和三角形三邊關系定理的應用,解題的關鍵是確定三角形的第三邊.12、15π【分析】圓錐的側面積=底面周長×母線長÷1.【詳解】解:底面圓的半徑為3cm,則底面周長=6πcm,側面面積=×6π×5=15πcm1.故答案為:15π.【點睛】本題考查的知識點圓錐的側面積公式,牢記公式是解此題的關鍵.13、【分析】根據旋轉的性質,即可得到∠BCQ=120°,當DQ⊥CQ時,DQ的長最小,再根據勾股定理,即可得到DQ的最小值.【詳解】解:如圖,由旋轉可得∠ACQ=∠B=60°,又∵∠ACB=60°,∴∠BCQ=120°,∵點D是AC邊的中點,∴CD=2,當DQ⊥CQ時,DQ的長最小,此時,∠CDQ=30°,∴CQ=CD=1,∴DQ=,∴DQ的最小值是,故答案為.【點睛】本題主要考查線段最小值問題,關鍵是利用旋轉、等邊三角形的性質及勾股定理求解.14、90°的圓周角所對的弦是直徑,經過半徑外端并且垂直于這條半徑的直線是圓的切線【詳解】解:利用90°的圓周角所對的弦是直徑可得到AB為直徑,根據經過半徑外端并且垂直于這條半徑的直線是圓的切線可判斷直線AD就是過點A的圓的切線.故答案為90°的圓周角所對的弦是直徑,經過半徑外端并且垂直于這條半徑的直線是圓的切線.點睛:本題考查了復雜作圖:復雜作圖是在五種基本作圖的基礎上進行作圖,一般是結合了幾何圖形的性質和基本作圖方法.解決此類題目的關鍵是熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作.15、【詳解】解:5+3+2=10.,故答案為:77.16、【分析】首先求出圓錐的底面半徑,然后可得底面周長,問題得解.【詳解】解:∵扇形的半徑為10cm,做成的圓錐形帽子的高為8cm,∴圓錐的底面半徑為cm,∴底面周長為2π×6=12πcm,即這張扇形紙板的弧長是12πcm,故答案為:12π.【點睛】本題考查圓錐的計算,用到的知識點為:圓錐的底面周長=側面展開扇形的弧長.17、1【詳解】∵△ABC是直角三角形,CD是斜邊的中線,∴CD=AB,∴AB=2CD=2×1=10cm,又∵EF是△ABC的中位線,∴EF=×10=1cm.故答案為1.考點:三角形中位線定理;直角三角形斜邊上的中線.18、1.【分析】根據反比例函數(shù)的幾何意義可知:的面積為,的面積為,然后兩個三角形面積作差即可求出結果.【詳解】解:根據反比例函數(shù)的幾何意義可知:的面積為,的面積為,∴的面積為,∴,∴.故答案為1.【點睛】本題考查反比例函數(shù)的幾何意義,解題的關鍵是正確理解的幾何意義,本題屬于基礎題型.三、解答題(共66分)19、他將售出價(x)定為14元時,才能使每天所賺的利潤(y)最大,最大利潤是360元.【分析】日利潤=銷售量×每件利潤.每件利潤為(x-8)元,銷售量為100-10(x-10),據此得關系式.【詳解】解:由題意得,y=(x-8)[100-10(x-10)]=-10(x-14)2+360(10≤a<20),∵a=-10<0∴當x=14時,y有最大值360答:他將售出價(x)定為14元時,才能使每天所賺的利潤(y)最大,最大利潤是360元.【點睛】本題考查二次函數(shù)的應用.20、-1【分析】直接利用絕對值的性質以及負指數(shù)冪的性質分別化簡得出答案.【詳解】解:原式=2﹣(2﹣2)﹣12=2﹣2+2﹣12=﹣1.【點睛】此題主要考查了實數(shù)運算,正確化簡各數(shù)是解題關鍵.21、1米/秒【解析】分析:過點C作CD⊥AB于點D,設AD=x米,小明的行走速度是a米/秒,根據直角三角形的性質用x表示出AC與BC的長,再根據小明與小軍同時到達山頂C處即可得出結論.本題解析:解:過點C作CD⊥AB于點D.設AD=x米,小明的行走速度是a米/秒.∵∠A=45°,CD⊥AB,∴AD=CD=x米,∴AC=x(米).在Rt△BCD中,∵∠B=30°,∴BC==2x(米).∵小軍的行走速度為米/秒,若小明與小軍同時到達山頂C處,∴=,解得a=1.答:小明的行走速度是1米/秒.22、計劃修建的這條高速鐵路穿越保護區(qū),理由見解析【分析】作PH⊥AC于H,根據等腰三角形的判定定理得到PB=AB=150,根據正弦的定義求出PH,比較大小得到答案.【詳解】計劃修建的這條高速鐵路穿越保護區(qū),理由如下:作PH⊥AC于H,由題意得,∠PBH=60°,∠PAH=30°,∴∠APB=30°,∴∠BAP=∠BPA,∴PB=AB=150,在Rt△PBH中,sin∠PBH=,∴PH=PB?sin∠PBH=75≈129.9,129.9>120,∴計劃修建的這條高速鐵路穿越保護區(qū).【點睛】本題考查了解直角三角形的應用,正確添加輔助線構建直角三角形是解題的關鍵.23、(1)見解析,(2)BC=3.【分析】(1)由AD是角平分線可得∠BAD=∠CAD,根據AC=CE可得∠CAD=∠E即可證明∠BAD=∠E,又因為對頂角相等,即可證明△ABD∽△ECD;(2)根據相似三角形的性質可得CD的長,進而可求出BC的長.【詳解】(1)∵是的角平分線,∴.∵,∴.∴.又∵∠ADB=∠CDE∴.(2)∵,∴.∵,∴.∴.∴.【點睛】本題考查了相似三角形的判定與性質,相似三角形的對應邊成比例,熟練掌握判定定理是解題關鍵.24、(1)證明見解析;(2)DGF,CDF,∠B+∠EGC=180°;(3).【分析】(1)根據矩形性質得出∠A=∠FDC=90°,求出∠CFD=∠AED,證出△AED∽△DFC即可;(2)當∠B+∠EGC=180°時,成立,分別證明即可;(3)過C作CN⊥AD于N,CM⊥AB交AB延長線于M,連接BD,設CN=x,△BAD≌△BCD,推出∠BCD=∠A=90°,證△BCM∽△DCN,求出CM=x,在Rt△CMB中,由勾股定理得出BM2+CM2=BC2,代入得出方程(x?2)2+(x)2=22,求出CN=,證出△AED∽△NFC,即可得出答案.【詳解】(1)證明:∵四邊形ABCD是矩形,∴∠A=∠FDC=90°,∵CF⊥DE,∴∠DGF=90°,∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,∴∠CFD=∠AED,∵∠A=∠CDF,∴△AED∽△DFC,∴;(2)當∠B+∠EGC=180°時,.要使,轉化成,顯然△DEA與△CFD不相似,考慮,需要△DEA∽△DFG,只需∠A=∠DGF;另一方面,只要,需要△CFD∽△CDG,只需∠CGD=∠CDF.當∠B+∠EGC=180°時:∵四邊形ABCD是平行四邊形,∴∠B=∠ADC,AD∥BC,∴∠B+∠A=180°,∵∠B+∠EGC=180°,∴∠A=∠EGC=∠FGD,∵∠FDG=∠EDA,∴△DFG∽△DEA,∴,∵∠B=∠ADC,∠B+∠EGC=180°,∠EGC+∠DGC=180°,∴∠CGD=∠CDF,∵∠GCD=∠DCF,∴△CGD∽△CDF,∴,∴,∴,即當∠B+∠EGC=180°時,成立;(3)過C作CN⊥AD于N,CM⊥AB交AB延長線于M,連接BD,設CN=x,

∵∠BAD=90°,即AB⊥AD,∴∠A=∠M=∠CNA=90°,∴四邊形AMCN是矩形,∴AM=CN,AN=CM,∵在△BAD和△BCD中,,∴△BAD≌△BCD(SSS),∴∠BCD=∠A=90°,∴∠ABC+∠ADC=180°,∵∠ABC+∠CBM=180°,∴∠MBC=∠ADC,∵∠CND=∠M=90°,∴△BCM∽△DCN

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論