下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022年高考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.執(zhí)行如圖的程序框圖,若輸出的結(jié)果,則輸入的值為()A. B.C.3或 D.或2.若雙曲線的離心率為,則雙曲線的焦距為()A. B. C.6 D.83.設(shè)雙曲線的一條漸近線為,且一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)相同,則此雙曲線的方程為()A. B. C. D.4.運(yùn)行如圖所示的程序框圖,若輸出的值為300,則判斷框中可以填()A. B. C. D.5.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積(單位:)為()A. B.6 C. D.6.已知直線:與橢圓交于、兩點(diǎn),與圓:交于、兩點(diǎn).若存在,使得,則橢圓的離心率的取值范圍為()A. B. C. D.7.已知實(shí)數(shù)滿足則的最大值為()A.2 B. C.1 D.08.已知拋物線:()的焦點(diǎn)為,為該拋物線上一點(diǎn),以為圓心的圓與的準(zhǔn)線相切于點(diǎn),,則拋物線方程為()A. B. C. D.9.設(shè)函數(shù)在定義城內(nèi)可導(dǎo),的圖象如圖所示,則導(dǎo)函數(shù)的圖象可能為()A. B.C. D.10.已知是定義是上的奇函數(shù),滿足,當(dāng)時(shí),,則函數(shù)在區(qū)間上的零點(diǎn)個(gè)數(shù)是()A.3 B.5 C.7 D.911.已知x,,則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件12.集合中含有的元素個(gè)數(shù)為()A.4 B.6 C.8 D.12二、填空題:本題共4小題,每小題5分,共20分。13.不等式的解集為________14.在三棱錐P-ABC中,,,,三個(gè)側(cè)面與底面所成的角均為,三棱錐的內(nèi)切球的表面積為_________.15.二項(xiàng)式的展開式中所有項(xiàng)的二項(xiàng)式系數(shù)之和是64,則展開式中的常數(shù)項(xiàng)為______.16.在中,角、、所對的邊分別為、、,若,,則的取值范圍是_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),直線為曲線的切線(為自然對數(shù)的底數(shù)).(1)求實(shí)數(shù)的值;(2)用表示中的最小值,設(shè)函數(shù),若函數(shù)為增函數(shù),求實(shí)數(shù)的取值范圍.18.(12分)已知函數(shù).(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若恒成立,求實(shí)數(shù)的取值范圍.19.(12分)已知,均為正數(shù),且.證明:(1);(2).20.(12分)已知分別是橢圓的左焦點(diǎn)和右焦點(diǎn),橢圓的離心率為是橢圓上兩點(diǎn),點(diǎn)滿足.(1)求的方程;(2)若點(diǎn)在圓上,點(diǎn)為坐標(biāo)原點(diǎn),求的取值范圍.21.(12分)2019年是五四運(yùn)動100周年.五四運(yùn)動以來的100年,是中國青年一代又一代接續(xù)奮斗、凱歌前行的100年,是中口青年用青春之我創(chuàng)造青春之中國、青春之民族的100年.為繼承和發(fā)揚(yáng)五四精神在青年節(jié)到來之際,學(xué)校組織“五四運(yùn)動100周年”知識競賽,競賽的一個(gè)環(huán)節(jié)由10道題目組成,其中6道A類題、4道B類題,參賽者需從10道題目中隨機(jī)抽取3道作答,現(xiàn)有甲同學(xué)參加該環(huán)節(jié)的比賽.(1)求甲同學(xué)至少抽到2道B類題的概率;(2)若甲同學(xué)答對每道A類題的概率都是,答對每道B類題的概率都是,且各題答對與否相互獨(dú)立.現(xiàn)已知甲同學(xué)恰好抽中2道A類題和1道B類題,用X表示甲同學(xué)答對題目的個(gè)數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.22.(10分)在中,角、、所對的邊分別為、、,且.(1)求角的大小;(2)若,的面積為,求及的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
根據(jù)逆運(yùn)算,倒推回求x的值,根據(jù)x的范圍取舍即可得選項(xiàng).【詳解】因?yàn)?所以當(dāng),解得
,所以3是輸入的x的值;當(dāng)時(shí),解得,所以是輸入的x的值,所以輸入的x的值為
或3,故選:D.【點(diǎn)睛】本題考查了程序框圖的簡單應(yīng)用,通過結(jié)果反求輸入的值,屬于基礎(chǔ)題.2.A【解析】
依題意可得,再根據(jù)離心率求出,即可求出,從而得解;【詳解】解:∵雙曲線的離心率為,所以,∴,∴,雙曲線的焦距為.故選:A【點(diǎn)睛】本題考查雙曲線的簡單幾何性質(zhì),屬于基礎(chǔ)題.3.C【解析】
求得拋物線的焦點(diǎn)坐標(biāo),可得雙曲線方程的漸近線方程為,由題意可得,又,即,解得,,即可得到所求雙曲線的方程.【詳解】解:拋物線的焦點(diǎn)為可得雙曲線即為的漸近線方程為由題意可得,即又,即解得,.即雙曲線的方程為.故選:C【點(diǎn)睛】本題主要考查了求雙曲線的方程,屬于中檔題.4.B【解析】
由,則輸出為300,即可得出判斷框的答案【詳解】由,則輸出的值為300,,故判斷框中應(yīng)填?故選:.【點(diǎn)睛】本題考查了程序框圖的應(yīng)用問題,解題時(shí)應(yīng)模擬程序框圖的運(yùn)行過程,以便得出正確的結(jié)論,是基礎(chǔ)題.5.D【解析】
根據(jù)幾何體的三視圖,該幾何體是由正方體去掉三棱錐得到,根據(jù)正方體和三棱錐的體積公式可求解.【詳解】如圖,該幾何體為正方體去掉三棱錐,所以該幾何體的體積為:,故選:D【點(diǎn)睛】本題主要考查了空間幾何體的三視圖以及體積的求法,考查了空間想象力,屬于中檔題.6.A【解析】
由題意可知直線過定點(diǎn)即為圓心,由此得到坐標(biāo)的關(guān)系,再根據(jù)點(diǎn)差法得到直線的斜率與坐標(biāo)的關(guān)系,由此化簡并求解出離心率的取值范圍.【詳解】設(shè),且線過定點(diǎn)即為的圓心,因?yàn)?,所以,又因?yàn)?,所以,所以,所以,所以,所以,所以,所?故選:A.【點(diǎn)睛】本題考查橢圓與圓的綜合應(yīng)用,著重考查了橢圓離心率求解以及點(diǎn)差法的運(yùn)用,難度一般.通過運(yùn)用點(diǎn)差法達(dá)到“設(shè)而不求”的目的,大大簡化運(yùn)算.7.B【解析】
作出可行域,平移目標(biāo)直線即可求解.【詳解】解:作出可行域:由得,由圖形知,經(jīng)過點(diǎn)時(shí),其截距最大,此時(shí)最大得,當(dāng)時(shí),故選:B【點(diǎn)睛】考查線性規(guī)劃,是基礎(chǔ)題.8.C【解析】
根據(jù)拋物線方程求得點(diǎn)的坐標(biāo),根據(jù)軸、列方程,解方程求得的值.【詳解】不妨設(shè)在第一象限,由于在拋物線上,所以,由于以為圓心的圓與的準(zhǔn)線相切于點(diǎn),根據(jù)拋物線的定義可知,、軸,且.由于,所以直線的傾斜角為,所以,解得,或(由于,故舍去).所以拋物線的方程為.故選:C【點(diǎn)睛】本小題主要考查拋物線的定義,考查直線的斜率,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.9.D【解析】
根據(jù)的圖象可得的單調(diào)性,從而得到在相應(yīng)范圍上的符號和極值點(diǎn),據(jù)此可判斷的圖象.【詳解】由的圖象可知,在上為增函數(shù),且在上存在正數(shù),使得在上為增函數(shù),在為減函數(shù),故在有兩個(gè)不同的零點(diǎn),且在這兩個(gè)零點(diǎn)的附近,有變化,故排除A,B.由在上為增函數(shù)可得在上恒成立,故排除C.故選:D.【點(diǎn)睛】本題考查導(dǎo)函數(shù)圖象的識別,此類問題應(yīng)根據(jù)原函數(shù)的單調(diào)性來考慮導(dǎo)函數(shù)的符號與零點(diǎn)情況,本題屬于基礎(chǔ)題.10.D【解析】
根據(jù)是定義是上的奇函數(shù),滿足,可得函數(shù)的周期為3,再由奇函數(shù)的性質(zhì)結(jié)合已知可得,利用周期性可得函數(shù)在區(qū)間上的零點(diǎn)個(gè)數(shù).【詳解】∵是定義是上的奇函數(shù),滿足,,可得,
函數(shù)的周期為3,
∵當(dāng)時(shí),,
令,則,解得或1,
又∵函數(shù)是定義域?yàn)榈钠婧瘮?shù),
∴在區(qū)間上,有.
由,取,得,得,
∴.
又∵函數(shù)是周期為3的周期函數(shù),
∴方程=0在區(qū)間上的解有共9個(gè),
故選D.【點(diǎn)睛】本題考查根的存在性及根的個(gè)數(shù)判斷,考查抽象函數(shù)周期性的應(yīng)用,考查邏輯思維能力與推理論證能力,屬于中檔題.11.D【解析】
,不能得到,成立也不能推出,即可得到答案.【詳解】因?yàn)閤,,當(dāng)時(shí),不妨取,,故時(shí),不成立,當(dāng)時(shí),不妨取,則不成立,綜上可知,“”是“”的既不充分也不必要條件,故選:D【點(diǎn)睛】本題主要考查了充分條件,必要條件的判定,屬于容易題.12.B【解析】解:因?yàn)榧现械脑乇硎镜氖潜?2整除的正整數(shù),那么可得為1,2,3,4,6,,12故選B二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
通過平方,將無理不等式化為有理不等式求解即可?!驹斀狻坑傻茫獾?,所以解集是。【點(diǎn)睛】本題主要考查無理不等式的解法。14.【解析】
先確定頂點(diǎn)在底面的射影,再求出三棱錐的高以及各側(cè)面三角形的高,利用各個(gè)面的面積和乘以內(nèi)切球半徑等于三棱錐的體積的三倍即可解決.【詳解】設(shè)頂點(diǎn)在底面上的射影為H,H是三角形ABC的內(nèi)心,內(nèi)切圓半徑.三個(gè)側(cè)面與底面所成的角均為,,,的高,,設(shè)內(nèi)切球的半徑為R,∴,內(nèi)切球表面積.故答案為:.【點(diǎn)睛】本題考查三棱錐內(nèi)切球的表面積問題,考查學(xué)生空間想象能力,本題解題關(guān)鍵是找到內(nèi)切球的半徑,是一道中檔題.15.【解析】
由二項(xiàng)式系數(shù)性質(zhì)求出,由二項(xiàng)展開式通項(xiàng)公式得出常數(shù)項(xiàng)的項(xiàng)數(shù),從而得常數(shù)項(xiàng).【詳解】由題意,.展開式通項(xiàng)為,由得,∴常數(shù)項(xiàng)為.故答案為:.【點(diǎn)睛】本題考查二項(xiàng)式定理,考查二項(xiàng)式系數(shù)的性質(zhì),掌握二項(xiàng)展開式通項(xiàng)公式是解題關(guān)鍵.16.【解析】
計(jì)算出角的取值范圍,結(jié)合正弦定理可求得的取值范圍.【詳解】,則,所以,,由正弦定理,.因此,的取值范圍是.故答案為:.【點(diǎn)睛】本題主要考查了正弦定理,正弦函數(shù)圖象和性質(zhì),考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】
試題分析:(1)先求導(dǎo),然后利用導(dǎo)數(shù)等于求出切點(diǎn)的橫坐標(biāo),代入兩個(gè)曲線的方程,解方程組,可求得;(2)設(shè)與交點(diǎn)的橫坐標(biāo)為,利用導(dǎo)數(shù)求得,從而,然后利用求得的取值范圍為.試題解析:(1)對求導(dǎo)得.設(shè)直線與曲線切于點(diǎn),則,解得,所以的值為1.(2)記函數(shù),下面考察函數(shù)的符號,對函數(shù)求導(dǎo)得.當(dāng)時(shí),恒成立.當(dāng)時(shí),,從而.∴在上恒成立,故在上單調(diào)遞減.,∴,又曲線在上連續(xù)不間斷,所以由函數(shù)的零點(diǎn)存在性定理及其單調(diào)性知唯一的,使.∴;,,∴,從而,∴,由函數(shù)為增函數(shù),且曲線在上連續(xù)不斷知在,上恒成立.①當(dāng)時(shí),在上恒成立,即在上恒成立,記,則,當(dāng)變化時(shí),變化情況列表如下:
3
0
極小值
∴,故“在上恒成立”只需,即.②當(dāng)時(shí),,當(dāng)時(shí),在上恒成立,綜合①②知,當(dāng)時(shí),函數(shù)為增函數(shù).故實(shí)數(shù)的取值范圍是考點(diǎn):函數(shù)導(dǎo)數(shù)與不等式.【方法點(diǎn)晴】函數(shù)導(dǎo)數(shù)問題中,和切線有關(guān)的題目非常多,我們只要把握住關(guān)鍵點(diǎn):一個(gè)是切點(diǎn),一個(gè)是斜率,切點(diǎn)即在原來函數(shù)圖象上,也在切線上;斜率就是導(dǎo)數(shù)的值.根據(jù)這兩點(diǎn),列方程組,就能解決.本題第二問我們采用分層推進(jìn)的策略,先求得的表達(dá)式,然后再求得的表達(dá)式,我們就可以利用導(dǎo)數(shù)這個(gè)工具來求的取值范圍了.18.(1)增區(qū)間為,減區(qū)間為;(2).【解析】
(1)將代入函數(shù)的解析式,利用導(dǎo)數(shù)可得出函數(shù)的單調(diào)區(qū)間;(2)求函數(shù)的導(dǎo)數(shù),分類討論的范圍,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,求出函數(shù)的最值可判斷是否恒成立,可得實(shí)數(shù)的取值范圍.【詳解】(1)當(dāng)時(shí),,則,當(dāng)時(shí),,則,此時(shí),函數(shù)為減函數(shù);當(dāng)時(shí),,則,此時(shí),函數(shù)為增函數(shù).所以,函數(shù)的增區(qū)間為,減區(qū)間為;(2),則,.①當(dāng)時(shí),即當(dāng)時(shí),,由,得,此時(shí),函數(shù)為增函數(shù);由,得,此時(shí),函數(shù)為減函數(shù).則,不合乎題意;②當(dāng)時(shí),即時(shí),.不妨設(shè),其中,令,則或.(i)當(dāng)時(shí),,當(dāng)時(shí),,此時(shí),函數(shù)為增函數(shù);當(dāng)時(shí),,此時(shí),函數(shù)為減函數(shù);當(dāng)時(shí),,此時(shí),函數(shù)為增函數(shù).此時(shí),而,構(gòu)造函數(shù),,則,所以,函數(shù)在區(qū)間上單調(diào)遞增,則,即當(dāng)時(shí),,所以,.,符合題意;②當(dāng)時(shí),,函數(shù)在上為增函數(shù),,符合題意;③當(dāng)時(shí),同理可得函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,此時(shí),則,解得.綜上所述,實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查導(dǎo)數(shù)知識的運(yùn)用,考查函數(shù)的單調(diào)性與最值,考查恒成立問題,正確求導(dǎo)和分類討論是關(guān)鍵,屬于難題.19.(1)見解析(2)見解析【解析】
(1)由進(jìn)行變換,得到,兩邊開方并化簡,證得不等式成立.(2)將化為,然后利用基本不等式,證得不等式成立.【詳解】(1),兩邊加上得,即,當(dāng)且僅當(dāng)時(shí)取等號,∴.(2).當(dāng)且僅當(dāng)時(shí)取等號.【點(diǎn)睛】本小題主要考查利用基本不等式證明不等式成立,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.20.(1);(2).【解析】
(1)根據(jù)焦點(diǎn)坐標(biāo)和離心率,結(jié)合橢圓中的關(guān)系,即可求得的值,進(jìn)而得橢圓的標(biāo)準(zhǔn)方程.(2)設(shè)出直線的方程為,由題意可知為中點(diǎn).聯(lián)立直線與橢圓方程,由韋達(dá)定理表示出,由判別式可得;由平面向量的線性運(yùn)算及數(shù)量積定義,化簡可得,代入弦長公式化簡;由中點(diǎn)坐標(biāo)公式可得點(diǎn)的坐標(biāo),代入圓的方程,化簡可得,代入數(shù)量積公式并化簡,由換元法令,代入可得,再令及,結(jié)合函數(shù)單調(diào)性即可確定的取值范圍,即確定的取值范圍,因而可得的取值范圍.【詳解】(1)分別是橢圓的左焦點(diǎn)和右焦點(diǎn),則,橢圓的離心率為則解得,所以,所以的方程為.(2)設(shè)直線的方程為,點(diǎn)滿足,則為中點(diǎn),點(diǎn)在圓上,設(shè),聯(lián)立直線與橢圓方程,化簡可得,所以則,化簡可得,而由弦長公式代入可得為中點(diǎn),則點(diǎn)在圓上,代入化簡可得,所以令,則,,令,則令,則,所以,因?yàn)樵趦?nèi)單調(diào)遞增,所以,即所以【點(diǎn)睛】本題考查了橢圓的標(biāo)準(zhǔn)方程求法,直線與橢圓的位置關(guān)系綜合應(yīng)用,由韋達(dá)定理研究參數(shù)間的關(guān)系,平面向量的線性運(yùn)算與數(shù)量積運(yùn)算,弦長公式的應(yīng)用及換元法在求取值范圍問題中的綜合應(yīng)用,計(jì)算量大,屬于難題.21.(1);(2)分布列見解析,期望為.【解析】
(1)甲同學(xué)至少抽到2道B類題包含兩個(gè)事件:一個(gè)抽到2道B類題,一個(gè)是抽到3個(gè)B類題,計(jì)算出抽法數(shù)后可求得概率;(2)的所有可能值分別為,依次計(jì)算概
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年企業(yè)員工離職與退休手續(xù)
- 文化娛樂行業(yè)設(shè)施安全管理規(guī)范
- 電力系統(tǒng)維護(hù)與檢修規(guī)范(標(biāo)準(zhǔn)版)
- 城市交通管理處罰制度
- 城市道路施工檔案管理制度
- 采購管理制度
- 辦公室網(wǎng)絡(luò)資源使用規(guī)范制度
- 養(yǎng)老院員工培訓(xùn)及考核制度
- 2026年雄安科技產(chǎn)業(yè)園開發(fā)管理有限公司招聘備考題庫帶答案詳解
- 2026年永仁縣教育系統(tǒng)公開遴選校醫(yī)的備考題庫及答案詳解參考
- 2026年度醫(yī)保制度考試真題卷及答案
- 2026年1月浙江省高考(首考)英語試題(含答案)+聽力音頻+聽力材料
- 2026年貨物運(yùn)輸合同標(biāo)準(zhǔn)模板
- 廣西壯族自治區(qū)南寧市2025-2026學(xué)年七年級上學(xué)期期末語文綜合試題
- 2024VADOD臨床實(shí)踐指南:耳鳴的管理解讀課件
- 2026年湖南鐵路科技職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫及參考答案詳解一套
- 第一單元寫作:考慮目的和對象 教學(xué)課件
- (人教A版)高二數(shù)學(xué)下學(xué)期期末考點(diǎn)復(fù)習(xí)訓(xùn)練專題05 導(dǎo)數(shù)的計(jì)算與復(fù)合函數(shù)導(dǎo)數(shù)的計(jì)算(重難點(diǎn)突破+課時(shí)訓(xùn)練)(原卷版)
- 開放大學(xué)(電大)《農(nóng)村社會學(xué)》期末試題
- 2025年70歲老人考駕照三力測試題及答案
- 2023-2024學(xué)年六年級上學(xué)期南沙區(qū)數(shù)學(xué)期末考試試題(含答案)
評論
0/150
提交評論