219回歸分析的基本思想及其初步應(yīng)用課件_第1頁
219回歸分析的基本思想及其初步應(yīng)用課件_第2頁
219回歸分析的基本思想及其初步應(yīng)用課件_第3頁
219回歸分析的基本思想及其初步應(yīng)用課件_第4頁
219回歸分析的基本思想及其初步應(yīng)用課件_第5頁
已閱讀5頁,還剩39頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1.1回歸分析的基本思想

及其初步應(yīng)用永昌一中趙珊1.1回歸分析的基本思想永昌一中1

線性回歸模型y=bx+a+e增加了隨機(jī)誤差項(xiàng)e,因變量y的值由自變量x和隨機(jī)誤差項(xiàng)e共同確定,即自變量x只能解析部分y的變化。

在統(tǒng)計(jì)中,我們也把自變量x稱為解析變量,因變量y為預(yù)報(bào)變量。線性回歸模型y=bx+a+e增加了隨機(jī)誤差項(xiàng)e,因變2殘差數(shù)據(jù)點(diǎn)和它在回歸直線上相應(yīng)位置的差異稱為相應(yīng)于點(diǎn)(xi,yi)的殘差。例:編號為6的女大學(xué)生,計(jì)算隨機(jī)誤差的效應(yīng)(殘差)殘差平方和把每一個(gè)殘差所得的值平方后加起來,用數(shù)學(xué)符號表示為:稱為殘差平方和在例1中,殘差平方和約為128.361。殘差數(shù)據(jù)點(diǎn)和它在回歸直線上相應(yīng)位置的差異3表1-4列出了女大學(xué)生身高和體重的原始數(shù)據(jù)以及相應(yīng)的殘差數(shù)據(jù)。殘差分析與殘差圖的定義:

我們可以通過殘差來判斷模型擬合的效果,判斷原始數(shù)據(jù)中是否存在可疑數(shù)據(jù),這方面的分析工作稱為殘差分析。我們可以利用圖形來分析殘差特性,作圖時(shí)縱坐標(biāo)為殘差,橫坐標(biāo)可以選為樣本編號,或身高數(shù)據(jù),或體重估計(jì)值等,這樣作出的圖形稱為殘差圖。表1-4列出了女大學(xué)生身高和體重的原始數(shù)據(jù)以及相應(yīng)的殘差數(shù)據(jù)4殘差圖的制作及作用。坐標(biāo)縱軸為殘差變量,橫軸可以有不同的選擇;若模型選擇的正確,殘差圖中的點(diǎn)應(yīng)該分布在以橫軸為心的帶形區(qū)域;對于遠(yuǎn)離橫軸的點(diǎn),要特別注意。身高與體重殘差圖異常點(diǎn)

錯(cuò)誤數(shù)據(jù)模型問題

幾點(diǎn)說明:第一個(gè)樣本點(diǎn)和第6個(gè)樣本點(diǎn)的殘差比較大,需要確認(rèn)在采集過程中是否有人為的錯(cuò)誤。如果數(shù)據(jù)采集有錯(cuò)誤,就予以糾正,然后再重新利用線性回歸模型擬合數(shù)據(jù);如果數(shù)據(jù)采集沒有錯(cuò)誤,則需要尋找其他的原因。另外,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,說明選用的模型計(jì)較合適,這樣的帶狀區(qū)域的寬度越窄,說明模型擬合精度越高,回歸方程的預(yù)報(bào)精度越高。殘差圖的制作及作用。身高與體重殘差圖異常點(diǎn)錯(cuò)誤數(shù)據(jù)5我們可以用相關(guān)指數(shù)R2來刻畫回歸的效果,其計(jì)算公式是顯然,R2的值越大,說明殘差平方和越小,也就是說模型擬合效果越好。R2越接近1,表示回歸的效果越好(因?yàn)镽2越接近1,表示解析變量和預(yù)報(bào)變量的線性相關(guān)性越強(qiáng))。

如果某組數(shù)據(jù)可能采取幾種不同回歸方程進(jìn)行回歸分析,則可以通過比較R2的值來做出選擇,即選取R2較大的模型作為這組數(shù)據(jù)的模型。總的來說:相關(guān)指數(shù)R2是度量模型擬合效果的一種指標(biāo)。在線性模型中,它代表自變量刻畫預(yù)報(bào)變量的能力。我們可以用相關(guān)指數(shù)R2來刻畫回歸的效果,其計(jì)算公式是顯然,R6一般地,建立回歸模型的基本步驟為:(1)確定研究對象,明確哪個(gè)變量是解析變量,哪個(gè)變量是預(yù)報(bào)變量。(2)畫出確定好的解析變量和預(yù)報(bào)變量的散點(diǎn)圖,觀察它們之間的關(guān)系(如是否存在線性關(guān)系等)。(3)由經(jīng)驗(yàn)確定回歸方程的類型(如我們觀察到數(shù)據(jù)呈線性關(guān)系,則選用線性回歸方程y=bx+a).(4)按一定規(guī)則估計(jì)回歸方程中的參數(shù)(如最小二乘法)。(5)得出結(jié)果后分析殘差圖是否有異常(個(gè)別數(shù)據(jù)對應(yīng)殘差過大,或殘差呈現(xiàn)不隨機(jī)的規(guī)律性,等等),過存在異常,則檢查數(shù)據(jù)是否有誤,或模型是否合適等。一般地,建立回歸模型的基本步驟為:(1)確定研究對象,明確哪7219回歸分析的基本思想及其初步應(yīng)用課件8討論1:建立回歸模型的基本步驟?討論2:對于非線性變量如何選取適當(dāng)回歸模型。討論3:如何對所選取的回歸模型進(jìn)行檢測?合作探究(9分鐘)要求:組長負(fù)責(zé)全員參與,分工協(xié)作。先比對答案,然后探討解題思路,總結(jié)解題規(guī)律方法。討論1:建立回歸模型的基本步驟?合作探究(9分鐘)要求:9激情展示(8分鐘)要求:展示同學(xué)要大聲,規(guī)范,清晰,迅速(黑板展示需在2—3分鐘內(nèi)書寫完)請同學(xué)們認(rèn)真聆聽,用紅筆記錄重點(diǎn)、疑惑點(diǎn),并主動進(jìn)一步完善和補(bǔ)充,質(zhì)疑。激情展示(8分鐘)要求:請同學(xué)們認(rèn)真聆聽,用紅筆記錄重點(diǎn)、疑10練習(xí)1在一段時(shí)間內(nèi),某中商品的價(jià)格x元和需求量Y件之間的一組數(shù)據(jù)為:求出Y對的回歸直線方程,并說明擬合效果的好壞。解:練習(xí)1在一段時(shí)間內(nèi),某中商品的價(jià)格x元和需求量Y件之間的11練習(xí)1

在一段時(shí)間內(nèi),某中商品的價(jià)格x元和需求量Y件之間的一組數(shù)據(jù)為:求出Y對的回歸直線方程,并說明擬合效果的好壞。列出殘差表為0.994因而,擬合效果較好。00.3-0.4-0.10.24.62.6-0.4-2.4-4.4練習(xí)1在一段時(shí)間內(nèi),某中商品的價(jià)格x元和需求量Y件之間的12案例2

一只紅鈴蟲的產(chǎn)卵數(shù)y和溫度x有關(guān)。現(xiàn)收集了7組觀測數(shù)據(jù)列于表中:(1)試建立產(chǎn)卵數(shù)y與溫度x之間的回歸方程;并預(yù)測溫度為28oC時(shí)產(chǎn)卵數(shù)目。(2)你所建立的模型中溫度在多大程度上解釋了產(chǎn)卵數(shù)的變化?溫度xoC21232527293235產(chǎn)卵數(shù)y/個(gè)711212466115325非線性回歸問題案例2一只紅鈴蟲的產(chǎn)卵數(shù)y和溫度x有關(guān)?,F(xiàn)收集了7組觀13假設(shè)線性回歸方程為:?=bx+a選模型由計(jì)算器得:線性回歸方程為y=19.87x-463.73

相關(guān)指數(shù)R2=r2≈0.8642=0.7464估計(jì)參數(shù)

解:選取氣溫為解釋變量x,產(chǎn)卵數(shù)為預(yù)報(bào)變量y。選變量所以,二次函數(shù)模型中溫度解釋了74.64%的產(chǎn)卵數(shù)變化。探索新知畫散點(diǎn)圖050100150200250300350036912151821242730333639方案1分析和預(yù)測當(dāng)x=28時(shí),y=19.87×28-463.73≈93一元線性模型假設(shè)線性回歸方程為:?=bx+a選模型由計(jì)算器得:線性14

y=bx2+a變換y=bt+a非線性關(guān)系線性關(guān)系方案2選用y=bx2+a,還是y=bx2+cx+a?

產(chǎn)卵數(shù)氣溫如何求a、b?

t=x2二次函數(shù)模型y=bx2+a變15方案2解答平方變換:令t=x2,產(chǎn)卵數(shù)y和溫度x之間二次函數(shù)模型y=bx2+a就轉(zhuǎn)化為產(chǎn)卵數(shù)y和溫度的平方t之間線性回歸模型y=bt+a溫度21232527293235溫度的平方t44152962572984110241225產(chǎn)卵數(shù)y/個(gè)711212466115325作散點(diǎn)圖,并由計(jì)算器得:y和t之間的線性回歸方程為y=0.367t-202.543,相關(guān)指數(shù)R2=0.802將t=x2代入線性回歸方程得:

y=0.367x2-202.543當(dāng)x=28時(shí),y=0.367×282-202.54≈85,且R2=0.802,所以,二次函數(shù)模型中溫度解釋了80.2%的產(chǎn)卵數(shù)變化。t方案2解答平方變換:令t=x2,產(chǎn)卵數(shù)y和溫度x之間二次函數(shù)16

變換y=bx+a非線性關(guān)系線性關(guān)系產(chǎn)卵數(shù)氣溫指數(shù)函數(shù)模型方案3

17方案3解答溫度xoC21232527293235z=lny1.9462.3983.0453.1784.1904.7455.784產(chǎn)卵數(shù)y/個(gè)711212466115325xz當(dāng)x=28oC時(shí),y≈44,指數(shù)回歸模型中溫度解釋了98.5%的產(chǎn)卵數(shù)的變化由計(jì)算器得:z關(guān)于x的線性回歸方程為

對數(shù)變換:在中兩邊取常用對數(shù)得令,則就轉(zhuǎn)換為z=bx+a.相關(guān)指數(shù)R2=0.98方案3解答溫度xoC21232527293235z=lny118最好的模型是哪個(gè)?

產(chǎn)卵數(shù)氣溫產(chǎn)卵數(shù)氣溫線性模型二次函數(shù)模型指數(shù)函數(shù)模型最好的模型是哪個(gè)?產(chǎn)卵數(shù)氣溫產(chǎn)卵數(shù)氣溫線性模型二次19比一比最好的模型是哪個(gè)?比一比最好的模型是哪個(gè)?20一般地,建立回歸模型的基本步驟為:(1)確定研究對象,明確哪個(gè)變量是解析變量,哪個(gè)變量是預(yù)報(bào)變量。(2)畫出確定好的解析變量和預(yù)報(bào)變量的散點(diǎn)圖,觀察它們之間的關(guān)系(如是否存在線性關(guān)系等)。(3)由經(jīng)驗(yàn)確定回歸方程的類型(如我們觀察到數(shù)據(jù)呈線性關(guān)系,則選用線性回歸方程y=bx+a).(4)按一定規(guī)則估計(jì)回歸方程中的參數(shù)(如最小二乘法)。(5)得出結(jié)果后分析殘差圖是否有異常(個(gè)別數(shù)據(jù)對應(yīng)殘差過大,或殘差呈現(xiàn)不隨機(jī)的規(guī)律性,等等),過存在異常,則檢查數(shù)據(jù)是否有誤,或模型是否合適等。一般地,建立回歸模型的基本步驟為:(1)確定研究對象,明確哪21當(dāng)堂檢測整理提綱當(dāng)堂檢測整理提綱221.1回歸分析的基本思想

及其初步應(yīng)用永昌一中趙珊1.1回歸分析的基本思想永昌一中23

線性回歸模型y=bx+a+e增加了隨機(jī)誤差項(xiàng)e,因變量y的值由自變量x和隨機(jī)誤差項(xiàng)e共同確定,即自變量x只能解析部分y的變化。

在統(tǒng)計(jì)中,我們也把自變量x稱為解析變量,因變量y為預(yù)報(bào)變量。線性回歸模型y=bx+a+e增加了隨機(jī)誤差項(xiàng)e,因變24殘差數(shù)據(jù)點(diǎn)和它在回歸直線上相應(yīng)位置的差異稱為相應(yīng)于點(diǎn)(xi,yi)的殘差。例:編號為6的女大學(xué)生,計(jì)算隨機(jī)誤差的效應(yīng)(殘差)殘差平方和把每一個(gè)殘差所得的值平方后加起來,用數(shù)學(xué)符號表示為:稱為殘差平方和在例1中,殘差平方和約為128.361。殘差數(shù)據(jù)點(diǎn)和它在回歸直線上相應(yīng)位置的差異25表1-4列出了女大學(xué)生身高和體重的原始數(shù)據(jù)以及相應(yīng)的殘差數(shù)據(jù)。殘差分析與殘差圖的定義:

我們可以通過殘差來判斷模型擬合的效果,判斷原始數(shù)據(jù)中是否存在可疑數(shù)據(jù),這方面的分析工作稱為殘差分析。我們可以利用圖形來分析殘差特性,作圖時(shí)縱坐標(biāo)為殘差,橫坐標(biāo)可以選為樣本編號,或身高數(shù)據(jù),或體重估計(jì)值等,這樣作出的圖形稱為殘差圖。表1-4列出了女大學(xué)生身高和體重的原始數(shù)據(jù)以及相應(yīng)的殘差數(shù)據(jù)26殘差圖的制作及作用。坐標(biāo)縱軸為殘差變量,橫軸可以有不同的選擇;若模型選擇的正確,殘差圖中的點(diǎn)應(yīng)該分布在以橫軸為心的帶形區(qū)域;對于遠(yuǎn)離橫軸的點(diǎn),要特別注意。身高與體重殘差圖異常點(diǎn)

錯(cuò)誤數(shù)據(jù)模型問題

幾點(diǎn)說明:第一個(gè)樣本點(diǎn)和第6個(gè)樣本點(diǎn)的殘差比較大,需要確認(rèn)在采集過程中是否有人為的錯(cuò)誤。如果數(shù)據(jù)采集有錯(cuò)誤,就予以糾正,然后再重新利用線性回歸模型擬合數(shù)據(jù);如果數(shù)據(jù)采集沒有錯(cuò)誤,則需要尋找其他的原因。另外,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,說明選用的模型計(jì)較合適,這樣的帶狀區(qū)域的寬度越窄,說明模型擬合精度越高,回歸方程的預(yù)報(bào)精度越高。殘差圖的制作及作用。身高與體重殘差圖異常點(diǎn)錯(cuò)誤數(shù)據(jù)27我們可以用相關(guān)指數(shù)R2來刻畫回歸的效果,其計(jì)算公式是顯然,R2的值越大,說明殘差平方和越小,也就是說模型擬合效果越好。R2越接近1,表示回歸的效果越好(因?yàn)镽2越接近1,表示解析變量和預(yù)報(bào)變量的線性相關(guān)性越強(qiáng))。

如果某組數(shù)據(jù)可能采取幾種不同回歸方程進(jìn)行回歸分析,則可以通過比較R2的值來做出選擇,即選取R2較大的模型作為這組數(shù)據(jù)的模型??偟膩碚f:相關(guān)指數(shù)R2是度量模型擬合效果的一種指標(biāo)。在線性模型中,它代表自變量刻畫預(yù)報(bào)變量的能力。我們可以用相關(guān)指數(shù)R2來刻畫回歸的效果,其計(jì)算公式是顯然,R28一般地,建立回歸模型的基本步驟為:(1)確定研究對象,明確哪個(gè)變量是解析變量,哪個(gè)變量是預(yù)報(bào)變量。(2)畫出確定好的解析變量和預(yù)報(bào)變量的散點(diǎn)圖,觀察它們之間的關(guān)系(如是否存在線性關(guān)系等)。(3)由經(jīng)驗(yàn)確定回歸方程的類型(如我們觀察到數(shù)據(jù)呈線性關(guān)系,則選用線性回歸方程y=bx+a).(4)按一定規(guī)則估計(jì)回歸方程中的參數(shù)(如最小二乘法)。(5)得出結(jié)果后分析殘差圖是否有異常(個(gè)別數(shù)據(jù)對應(yīng)殘差過大,或殘差呈現(xiàn)不隨機(jī)的規(guī)律性,等等),過存在異常,則檢查數(shù)據(jù)是否有誤,或模型是否合適等。一般地,建立回歸模型的基本步驟為:(1)確定研究對象,明確哪29219回歸分析的基本思想及其初步應(yīng)用課件30討論1:建立回歸模型的基本步驟?討論2:對于非線性變量如何選取適當(dāng)回歸模型。討論3:如何對所選取的回歸模型進(jìn)行檢測?合作探究(9分鐘)要求:組長負(fù)責(zé)全員參與,分工協(xié)作。先比對答案,然后探討解題思路,總結(jié)解題規(guī)律方法。討論1:建立回歸模型的基本步驟?合作探究(9分鐘)要求:31激情展示(8分鐘)要求:展示同學(xué)要大聲,規(guī)范,清晰,迅速(黑板展示需在2—3分鐘內(nèi)書寫完)請同學(xué)們認(rèn)真聆聽,用紅筆記錄重點(diǎn)、疑惑點(diǎn),并主動進(jìn)一步完善和補(bǔ)充,質(zhì)疑。激情展示(8分鐘)要求:請同學(xué)們認(rèn)真聆聽,用紅筆記錄重點(diǎn)、疑32練習(xí)1在一段時(shí)間內(nèi),某中商品的價(jià)格x元和需求量Y件之間的一組數(shù)據(jù)為:求出Y對的回歸直線方程,并說明擬合效果的好壞。解:練習(xí)1在一段時(shí)間內(nèi),某中商品的價(jià)格x元和需求量Y件之間的33練習(xí)1

在一段時(shí)間內(nèi),某中商品的價(jià)格x元和需求量Y件之間的一組數(shù)據(jù)為:求出Y對的回歸直線方程,并說明擬合效果的好壞。列出殘差表為0.994因而,擬合效果較好。00.3-0.4-0.10.24.62.6-0.4-2.4-4.4練習(xí)1在一段時(shí)間內(nèi),某中商品的價(jià)格x元和需求量Y件之間的34案例2

一只紅鈴蟲的產(chǎn)卵數(shù)y和溫度x有關(guān)?,F(xiàn)收集了7組觀測數(shù)據(jù)列于表中:(1)試建立產(chǎn)卵數(shù)y與溫度x之間的回歸方程;并預(yù)測溫度為28oC時(shí)產(chǎn)卵數(shù)目。(2)你所建立的模型中溫度在多大程度上解釋了產(chǎn)卵數(shù)的變化?溫度xoC21232527293235產(chǎn)卵數(shù)y/個(gè)711212466115325非線性回歸問題案例2一只紅鈴蟲的產(chǎn)卵數(shù)y和溫度x有關(guān)?,F(xiàn)收集了7組觀35假設(shè)線性回歸方程為:?=bx+a選模型由計(jì)算器得:線性回歸方程為y=19.87x-463.73

相關(guān)指數(shù)R2=r2≈0.8642=0.7464估計(jì)參數(shù)

解:選取氣溫為解釋變量x,產(chǎn)卵數(shù)為預(yù)報(bào)變量y。選變量所以,二次函數(shù)模型中溫度解釋了74.64%的產(chǎn)卵數(shù)變化。探索新知畫散點(diǎn)圖050100150200250300350036912151821242730333639方案1分析和預(yù)測當(dāng)x=28時(shí),y=19.87×28-463.73≈93一元線性模型假設(shè)線性回歸方程為:?=bx+a選模型由計(jì)算器得:線性36

y=bx2+a變換y=bt+a非線性關(guān)系線性關(guān)系方案2選用y=bx2+a,還是y=bx2+cx+a?

產(chǎn)卵數(shù)氣溫如何求a、b?

t=x2二次函數(shù)模型y=bx2+a變37方案2解答平方變換:令t=x2,產(chǎn)卵數(shù)y和溫度x之間二次函數(shù)模型y=bx2+a就轉(zhuǎn)化為產(chǎn)卵數(shù)y和溫度的平方t之間線性回歸模型y=bt+a溫度21232527293235溫度的平方t44152962572984110241225產(chǎn)卵數(shù)y/個(gè)711212466115325作散點(diǎn)圖,并由計(jì)算器得:y和t之間的線性回歸方程為y=0.367t-202.543,相關(guān)指數(shù)R2=0.802將t=x2代入線性回歸方程得:

y=0.367x2-202.543當(dāng)x=28時(shí),y=0.367×282-202.54≈85,且R2=0.802,所以,二次函數(shù)模型中溫度解釋了80.2%的產(chǎn)卵數(shù)變化。t方案2解答平方變換:令t=x2,產(chǎn)卵數(shù)y和溫度x之間二次函數(shù)38

變換y=bx

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論