付費(fèi)下載
下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Multiple
Regression
ysis:Estimation(1)多元回歸分析:估計(jì)(1)y
=
0
+
1x1
+
2x2
+
.
.
.kxk
+u1Chapter
Outline
本章大綱Motivation
for
Multiple
Regression使用多元回歸的動(dòng)因Mechanics
andInterpretation
of
Ordinary
Least
Squares普通最小二乘法的操作和解釋The
Expected
Values
of
the
OLS
EstimatorsOLS估計(jì)量的期望值The
Variance
of
the
OLSEstimatorsOLS估計(jì)量的方差Efficiency
of
OLS:
The
Gauss-Markov
TheoremOLS的有效性:
-
定理2Lecture
Outline
課堂大綱Motivation
for
multivariate
ysis
使用多元回歸的動(dòng)因The
Model
模型The
Estimation
估計(jì)Propertiesof
the
OLS
estimates
OLS估計(jì)的性質(zhì)The
Partialling
out
Interpretation
對(duì)“排除其它變量影響”的解釋Simple
versus
multiple
regressions
比較簡(jiǎn)單回歸模型與多元回歸模型Goodness
of
Fit
擬合優(yōu)度3Motivation:
Advantage動(dòng)因:優(yōu)點(diǎn)The
primary
drawback
of
the
simple
regression ysis
forempirical
workis
that
it
is
very
difficult
to
draw
ceteris
paribusconclusions
about
how
x
affects
y.在實(shí)證工作中使用簡(jiǎn)單回歸模型的主要缺陷是:要得到在其它條件不變的情況下,x對(duì)y的影響非常。Whether
the
ceteris
paribus
effects
are
reliable
or
not
depends
onwhether
the
conditional
mean
assumption
is
realistic.在其它條件不變情況假定下 估計(jì)出的x對(duì)y的影響值是否
依賴,完全取決于條件均值零值假設(shè)是否現(xiàn)實(shí)。If
other
factors
that
affecting
y
are
not
correlated
with
x,
changingx
can
ensure
thatu
is
not
changed,and
the
effect
of
x
ony
can
beidentified.如果影響y的其它因素與x不相關(guān),則改變x可以保證u不變,從而x對(duì)y的影響可以被識(shí)別出來(lái)。4Motivation
:
Advantage動(dòng)因:優(yōu)點(diǎn)Multiple
regression ysis
is
more
amenable
to
ceteris
paribusysis
because
it
allows
us
to
explicitly
control
for
many
otherfactors
that
simultaneously
affect
the
dependent
variable.多元回歸分析更適合于其它條件不變情況下的分析,因?yàn)槎嘣貧w分析允許
明確地控制許多其它也同時(shí)影響因變量的因素。Multiple
regression
models
can modate
manyexplanatoryvariables
that
may
be
correlated.多元回歸模型能容許很多解釋變量,而這些變量可以是相關(guān)的。Important
for
drawing
inference
about
causal
relations
betweeny
and
explanatory
variables
when
using
non-experimentaldata.在使用非實(shí)驗(yàn)數(shù)據(jù)時(shí),多元回歸模型對(duì)推斷y與解釋變量間的因果關(guān)系很重要。5Motivation
:
Advantage動(dòng)因:優(yōu)點(diǎn)It
can
explain
more
of
the
variation
in
thedependent
variable.它可以解釋
的因變量變動(dòng)。It
can
incorporate
more
general
functional
form.它可以表現(xiàn)更一般的函數(shù)形式。The
multiple
regression
model
is
the
most
widelyused
vehicle
for
empirical
ysis.多元回歸模型是實(shí)證分析中最廣泛使用的工具。6Motivation:
AnExample動(dòng)因:一個(gè)例子7Consider
a
simple
version
of
the
wage
equation
forobtaining
the
effect
of
education
on
hourly
wage:考慮一個(gè)簡(jiǎn)單版本的解釋教育對(duì)小時(shí)工資影響的工資方程。exper:
years
of
labor
marketexperienceexper:在勞動(dòng)力市場(chǎng)上的經(jīng)歷,用年衡量wage
0
1educ
2
exp
er
uIn
this
example
experience
is
explicitly
taken
out
ofthe
error
term.在這個(gè)例子中,“在勞動(dòng)力市場(chǎng)上的經(jīng)歷”被明確地從誤差項(xiàng)中提出。Motivation:
AnExample動(dòng)因:一個(gè)例子8Consider
a
model
that
says
family
consumptionis
a
quadratic
function
of
family
e:考慮一個(gè)模型:家庭消費(fèi)是家庭收入的二次方程。Cons
=
0
+
1
inc+2
inc2
+uNow
the
marginal
propensity
to
consume
isapproximated
by現(xiàn)在,邊際消費(fèi)傾向可以近似為MPC=
1
+22The
Model
with
kIndependentVariables含有k個(gè)自變量的模型T eral
multiple
linearregression
model
can
be
written
as一般的多元線性回歸模型可以寫為y
0
1x1
2
x2
k
xk
u9Parallels
with
Simple
Regression類似于簡(jiǎn)單回歸模型0
is
still
the
intercept
0仍是截距1
to
k
all
called
slope
parameters1到k都稱為斜率參數(shù)u
is
still
the
error
term(or
disturbance)
u仍是誤差項(xiàng)(或干擾項(xiàng))Still
need
to
make
a
zero
conditional
mean
assumption,
so
nowassume
that
仍需作零條件期望的假設(shè),所以現(xiàn)在假設(shè)E(u|x1,x2,
…,xk)
=
0Still
minimizing
the
sum
of
squaredresiduals,
so
have
k+1order
conditions
仍然最小化殘差平方和,所以得到k+1個(gè)一階條件10Obtaining
the
OLS
Estimates11如何得到OLS估計(jì)值The
method
of
ordinary
least
squareschooses
the
estimates
to
minimizethe
sum
of
squared
residuals,普通最小二乘法選擇能最小化殘差平方和的估計(jì)值,01
i1ni(
y
i
1Obtaining
the
OLS
Estimates如何得到OLS估計(jì)值The
k+1
order
conditions
arek+1
個(gè)一階條件是i
2ikni1ni1ni1ni1xi1
(
yi
?
?
x
?
x0
1
i1
k
ikx
(
yi
?
?
x
?
x0
1
i1
k
ik(
yi
?
?
x
?
x
)
00
1
i1
k
ik)
0)
0x
(
yi
?
?
x
?
x
)
00
1
i1
k
ik...12Obtaining
the
OLS
Estimates如何得到OLS估計(jì)值The order
conditions
are
also
the
samplecounterparts
of
the
related
population
moments.一階條件也是相關(guān)的總體矩在樣本中的對(duì)應(yīng)。After
estimationwe
obtain
the
OLS
regressionline,
or
the
sample
regression
function
(SRF)得到OLS回歸線,或稱為樣本回歸k
ik101i
...
?xx
??在估計(jì)之后,方程(SRF)?i
13Interpreting
Multiple
Regression對(duì)多元回歸的解釋141
1
2
2
k
ky?
?
?
x
?
x
...
?
x
,
so0 1
1
2
2
k
ky?
?
x
?
x
...
?
x
,y?
?
x
,
that
is
each
hasso
holding
x2
,...,
xk
fixed
implies
that所以,保持
x2
,...,xk
不變意味著1
1a
ceteris
paribus
interpretation即,每一個(gè)
都有一個(gè)局部效應(yīng),或其它情況不變效應(yīng),的解釋Example:Determinants
of
College
GPA例子:大學(xué)GPA的決定因素Two-independent-variable
regression兩個(gè)解釋變量的回歸pcolGPA:
predicted
values
of
college
grade
point
averagepcolGPA:大學(xué)績(jī)點(diǎn)
值hsGPAhsGPAACTACT:
high
school
GPA:高中績(jī)點(diǎn):
achievement
test
score:成績(jī)測(cè)驗(yàn)分?jǐn)?shù)pcolGPA
=
1.29
+
0.453hsGPA+0.0094ACT15Example:Determinants
of
College
GPA例子:大學(xué)GPA的決定因素16One-independent-variable
regression一個(gè)解釋變量的回歸pcolGPA
=
2.4
+0.0271ACTThe
coefficients
on
ACT
is
three
times
larger.ACT的系數(shù)大三倍。If
these
two
regressions
were
both
true,
they
can
beconsidered
as
the
results
of
two
differentexperiments.如果這兩個(gè)回歸都是對(duì)的,它們可以被認(rèn)為是兩個(gè)不同實(shí)驗(yàn)的結(jié)果。Holding
other
factors
fixed“保持其它因素不變”的含義The
power
of
multiple
regression ysis
isthat
it
allowsus
to n
non-experimentalenvironments
what
natural
scientists
are
able
ton
a
controlled
laboratory
setting:
keep
otherfactors
fixed.多元回歸分析的優(yōu)勢(shì)在于它使能在非實(shí)驗(yàn)環(huán)境中去做自然科學(xué)家在受控實(shí)驗(yàn)中所能做的事情:保持其它因素不變。17Properties
性質(zhì)The
sample
average
of
the
residuals
is
zero.殘差項(xiàng)的樣本平均值為零The
sample
covariance
between
each
independentvariable
and
the
OSL
residuals
is
zero.每個(gè)自變量和OLS協(xié)殘差之間的樣本協(xié)方差為零。The
point
(x1,
x2
, ,
xk
,
y)
isalways
on
the
OLSregression
line.點(diǎn)(x1,
x2
, ,
xk
,
y)
總位于OLS回歸線上。18A
“Partialling
Out”
Interpretation19對(duì)“排除其它變量影響”的解釋Consider
regression
line
of
考慮回歸線1One
way
to
express
?
is0
1
1
2
2??iy
?
x
?
x1??i1
iri1
i
(1?
的一種表達(dá)是r?i1is
obtained
in
the
following
way:r?i1
由以下方式得出:A
“Partialling
Out”
Interpretation對(duì)“排除其它變量影響”的解釋In
other
words, is
the
residual
from
the
regression然后,將y向
進(jìn)行簡(jiǎn)單回歸得到。r11obtain
?
.1r1?Regress
our independent
variable
x1
on
oursecond
independentvariable
x2
,and
then
obtainthe
residualr1
.將第一個(gè)自變量對(duì)第二個(gè)自變量進(jìn)行回歸,然后得到殘差r1
。x?1
?0
?1x?2換句話說(shuō),r1
是由回歸
x?1
?0
?1x?2得到的殘差。Then,
do
a
simple
regression
of
y
on
r1
to20“Partialling
Out”
continued“排除其它變量影響”(續(xù))
Previous
equation
implies
that
regressingy
on
x1and
x2
gives
same
effect
of
x1
as
regressing
y
onresiduals
from
a
regression
of
x1
on
x2上述方程意味著:將y同時(shí)對(duì)x1和x2回歸得出的x1的影響與先將x1對(duì)x2回歸得到殘差,再將y對(duì)此殘差回歸得到的x1的影響相同。
This
meansonly
the
part
of
x1
that
is
uncorrelatedwith
x2
are
being
related
to
y
,
so
we’re
estimatingthe
effect
ofx1
on
y
after
x2
has
been
“partialled
out”這意味著只有x1中與x2不相關(guān)的部分與y有關(guān),所以在x2被“排除影響”之后,
再估計(jì)x1對(duì)y的影響。21“Partialling
Out”
continued“排除其它變量影響”(續(xù))In
t eral
model
with
k
explanatoryequationcomes
from
the
regression
of
x1
on
x2…
,
xk.的回歸。Thusmeasures
the
effect
of
x1
on
y
afterx2,…
,
xk.has
been
partialled
out.x1對(duì)y的影響。?i1
ir?i1
i
(1
,
but
the
residual
r11variables,
?
can
still
be
written
asin1?1在一個(gè)含有k個(gè)解釋變量的一般模型中,?
仍然可以?i1
ir?i1
i
(1
1寫成
,但殘差
r
來(lái)自x1對(duì)x2…
,xk1于是?
度量的是,在排除x2…,xk等變量的影響之后,22Simple
vs
Multiple
Regression
Estimates比較簡(jiǎn)單回歸和多元回歸估計(jì)值11Generally,
1
?
unless:Compare
the
simple
regression
y
0
1
x1比較簡(jiǎn)單回歸y
0
1
x1with
the
multiple
regression
y?
?
?
x
?
x0
1
1
2
2與多元回歸
y?
?
?
x
?
x0
1
1
2
223一般來(lái)說(shuō),1
?
,除非:
0
(i.e.
no
partial
effect
of
x2
)
OR?2?2
(0
也就是x2對(duì)y沒(méi)有局部效應(yīng)),或x1
and
x2
are
uncorrelated
in
the
sample在樣本中x1和x2不相關(guān)Simple
vs
Multiple
Regression
Estimates比較簡(jiǎn)單回歸和多元回歸估計(jì)值24regression
of
x2
on
x1
. The
proof.This
is
because
there
existsa
simple
relationship這是因?yàn)榇嬖谝粋€(gè)簡(jiǎn)單的關(guān)系~
?
?
~1
1
2
1~where
1
is
theslope
coefficient
from
thesimple這里,1是x2對(duì)x1的簡(jiǎn)單回歸得到的斜率系數(shù)。證明如下。~1
125211
11
111
11121
1
1
2
20
1
1
2
2?~
?
?
~1
2
1
?
?
(x
x
)2(x1
x1
)(x2
x2
)(x
x
)2
x2
)]
x
)[
(x
x1
)
?2
(x2
(x1(x
x
)2(x
x1
)(
y
y)
x
),
thereforey
y
?
(x
x
)
?
(x
u?
so
thatBecause
y
?
?
x
?
xSimple
vs
Multiple
Regression
Estimates簡(jiǎn)單回歸和多元回歸估計(jì)值的比較Let
β?j
,
j
0,1,...,
k
be
the
OLS
estimators
from
theregression
using
full
set
of
explanatory
variables.令β?j
,j
0,1,...,k為用全部解釋變量回歸的OLS估計(jì)量。
Let
βj
,j
0,1,...,k
1be
the
OLS
estimators
fromthe
regression
that
leaves
out
xk
.令βj
,j
0,1,...,k-1為用除xk
外的解釋變量回歸的OLS估計(jì)量。
Let
δj
be
the
slope
coefficient
on
xj
in
the
regressionof
xk
on
x1
,...,
xk-1.Then令δj為xk向x1
,...,xk-1回歸中x
j的斜率系數(shù)。那么βj
β?j
β?k
δj
.26Simple
vs
Multiple
Regression
Estimates簡(jiǎn)單回歸和多元回歸估計(jì)值的比較27In
the
case
with
k
independentvariables,
thesimple
regression and
the
multiple
regressionproduce
identical
estimate
for
x1
only
if在k個(gè)自變量的情況下,簡(jiǎn)單回歸和多元回歸只有在以下條件下才能得到對(duì)x1相同的估計(jì)(1)
the
OLS
coefficients
on
x2
through
xk
are
allzero,or對(duì)從x2到xk的OLS系數(shù)都為零,或(2)
x1
isuncorrelated
with
eachof
x2…
,
xk.(2)
x1與x2…,xk中的每一個(gè)都不相關(guān)。Summary
總結(jié)In
this
lecture
we
introduce
the
multiple
regression.在本次課中,
介紹了多元回歸。Important
concepts:重要概念:Interpreting
the
meaning
of
OLS
estimates
in
multipleregression解釋多元回歸中OLS估計(jì)值的意義Partialling
effect局部效應(yīng)(其它情況不變效應(yīng))Properties
of
OLSOLS的性質(zhì)When
will
the
estimates
from
simple
and
multipleregression
to
be
identical什么時(shí)候簡(jiǎn)單回歸和多元回歸的估計(jì)值相同2829Multiple
Regression ysis:
Estimation(2)多元回歸分析:估計(jì)(2)y
=
0
+
1x1
+
2x2
+
.
.
.kxk
+
uChapter
Outline
本章大綱Motivation
for
Multiple
Regression使用多元回歸的動(dòng)因Mechanics
and
Interpretation
of
Ordinary
Least
Squares普通最小二乘法的操作和解釋The
Expected
Values
of
the
OLS
EstimatorsOLS估計(jì)量的期望值The
Variance
of
the
OLS
EstimatorsOLS估計(jì)量的方差Efficiency
of
OLS:
The
Gauss-MarkovTheoremOLS的有效性:
-
定理30Lecture
Outline
課堂大綱31The
MLR.1–
MLR.4
Assumptions假定MLR.1–MLR.4The
Unbiasedness
of
the
OLS
estimatesOLS估計(jì)值的無(wú)偏性O(shè)ver
or
Under
specification
of
models模型設(shè)定不足或過(guò)度設(shè)定Omitted
VariableBias遺漏變量的偏誤Sampling
Variance
of
the
OLS
slope
estimatesOLS斜率估計(jì)量的抽樣方差The
expected
value
of
the
OLS
estimatorsOLS估計(jì)量的期望值We
now
turn
to
the
statistical
propertiesof
OLSforestimating
the
parameters
in
an
underlyingpopulation
model.現(xiàn)在轉(zhuǎn)向OLS的統(tǒng)計(jì)特性,而 知道OLS是估計(jì)潛在的總體模型參數(shù)的。Statistical
properties
are
the
properties
ofestimators
when
random
sampling
is
donerepeatedly.
We
do
not
care
about
how
an
estimatordoes
in
a
specific
sample.統(tǒng)計(jì)性質(zhì)是估計(jì)量在隨機(jī)抽樣不斷重復(fù)時(shí)的性質(zhì)。并不關(guān)心在某一特定樣本中估計(jì)量如何。32Assumption
MLR.1
(Linear
in
Parameters)假定MLR.1(對(duì)參數(shù)而言為線性)33In
the
population
model
(or
the
true
model),
thedependent
variable
y
is
related
to
the
independentvariable
x
and
the
error
u
as在總體模型(或稱真實(shí)模型)中,因變量y與自變量x和誤差項(xiàng)u關(guān)系如下y=
0+
1x1+
2x2+
…+kxk+uwhere
1,
2
…,
k
are
the
unknown
parametersof
interest,and
u
is
an
unobservable
random
error
or
randomdisturbance
term.其中,1,2
…,k
為所關(guān)心的未知參數(shù),u為不可觀測(cè)的隨機(jī)誤差項(xiàng)或隨機(jī)干擾項(xiàng)。Assumption
MLR.2
(Random
Sampling)假定MLR.2(隨機(jī)抽樣性)We
can
use
a
random
sampleof
size
n
from
thepopulation,{(xi1,可以使用總體的一個(gè)容量為n的隨機(jī)樣本xi2…,
xik;
yi):
i=1,…,n},wherei
denotesobservation,and
j=
1,…,k
denotesthe
jth
regressor.其中i
代表觀察,j=1,…,k代表第j個(gè)回歸元Sometimes
we
write
有時(shí) 模型寫為yi=
0+
1xi1+
2xi2+
…+kxik+ui34Assumptions
MLR.3
假定MLR.3MLR.3(Zero
Conditional
Mean)
(零條件均值)
:E(u|
xi1,
xi2…,xik)=0.When
this
assumption
holds,
we
say
all
of
theexplanatory
variables
are
exogenous;
when
it
fails,
wesay
that
the
explanatory
variables
are
endogenous.當(dāng)該假定成立時(shí),稱所有解釋變量均為外生的;否則,則稱解釋變量為內(nèi)生的。We
will
pay
particular
attention
to
the
case
thatassumption
3
fails
because
of
omitted
variables.特別注意當(dāng)重要變量缺省時(shí)導(dǎo)致假定3不成立的情況。35Assumption
MLR.4
假定MLR.4MLR.4(No
perfect
collinearity)
(不存在完全共線性)
:In
the
sample,none
of
the
independent
variables
is
constant,
and
there
are
noexactlinearrelationshipsamongtheindependentvariables.在樣本中,沒(méi)有一個(gè)自變量是常數(shù),自變量之間也不存在嚴(yán)格的線性關(guān)系。When
one
regressor
is
an
exact
linear
combination
of
the
other
regressor(s),wesaythemodelsuffersfromperfectcollinearity.當(dāng)一個(gè)自變量是其它解釋變量的嚴(yán)格線性組合時(shí),說(shuō)此模型有嚴(yán)格共線性。Examples
of
perfect
collinearity:完全共線性的例子:y=0+
1x1+
2x2+
3x3+u,
x2
=
3x3,y=
0+
1log(inc)+
2log(inc2
)+uy=
0+
1x1+
2x2+
3x3+
4x4
u,x1+x2
+x3+
x4
=1.Perfect
collinearity
also
happenswhen
y=0+1x1+2x2+3x3+u,n<(k+1).當(dāng)y=0+1x1+2x2+3x3+u,n<(k+1)也發(fā)生完全共線性的情況。The
denominator
of
the
OLS
estimator
is
0
when
there
is
perfect
collinearity,hence
the
OLS
estimator
cannot
be
performed.You
can
check
this
by
looking
atthe
formula
of
the
estimator
for
2
in
the
session
discussing
the
partialling-outeffect.在完全共線性情況下,OLS估計(jì)量的分母為零,因此OLS估計(jì)量不能得到。你可以回顧“排除其它變量影響”部分中的2估計(jì)量的式子,來(lái)檢驗(yàn)這一點(diǎn)。36Theorem
3.1
(Unbiasedness
of
OLS)37定理3.1(OLS的無(wú)偏性)Under
assumptions
MLR.1
throughMLR.4,
the
OLS
estimators
areunbiased
estimator
of
thepopulation
parameters,
that
is在假定MLR.1~MLR.4下,OLS估計(jì)量是總體參數(shù)的無(wú)偏估計(jì)量,即E(
j
)
j
,
j
1,2,...,kTheorem
3.1
(Unbiasedness
of
OLS)定理3.1(OLS的無(wú)偏性)Unbiasedness
is
the
property
of
an
estimator,thatis,
the
procedure
that
can
produce
an
estimate
fora
specific
sample,
not
an
estimate.無(wú)偏性是估計(jì)量的特性,而不是估計(jì)值的特性。估計(jì)量是(過(guò)程),該方法使得給定一個(gè)樣本,法可以得到一組估計(jì)值。 評(píng)價(jià)的是方法的優(yōu)劣。Not
correct
to
say“5
percent
is
anunbiasedestimate
of
the
return
of
education”.不正確的說(shuō)法:“5%是教育匯報(bào)率的無(wú)偏估計(jì)值?!?8Too
Many
or
TooFew
Variables變量太多還是太少了?What
happens
if
we
include
variables
in
our
specificationthat
don’t
belong?如果
在設(shè)定中包含了不屬于真實(shí)模型的變量會(huì)怎樣?A
model
is
overspecifed
when
one
or
more
of
theindependent
variablesis
included
in
the
model
even
thoughit
has
no
partial
effect
on
y
in
the
population盡管一個(gè)(或多個(gè))自變量在總體中對(duì)y沒(méi)有局部效應(yīng),但卻被放到了模型中,則此模型被過(guò)度設(shè)定。
There
is
no
effect
on
our
parameter
estimate,
and
OLSremains
unbiased.
But
it
can
have
undesirable
effects
on
thevariances
of
the
OLS
estimators.過(guò)度設(shè)定對(duì)
的參數(shù)估計(jì)沒(méi)有影響,OLS仍然是無(wú)偏的。但它對(duì)OLS估計(jì)量的方差有不利影響。39Too
Many
or
TooFew
Variables變量太多還是太少了?What
if
we
exclude
a
variable
from
ourspecification
that
doesbelong?如果 在設(shè)定中排除了一個(gè)本屬于真實(shí)模型的變量會(huì)如何?If
a
variable
th tually
belongs
in
the
true
model
is
omitted,
wesay
the
modelis
underspecified.如果一個(gè)實(shí)際上屬于真實(shí)模型的變量被遺漏,說(shuō)此模型設(shè)定不足。OLS
will
usually
be
biased.此時(shí)OLS通常有偏。Deriving
the
bias
caused
by
omitting
animportant
variable
isanexample
ofmisspecification
ysis.推導(dǎo)由遺漏重要變量所造成的偏誤,是模型設(shè)定分析的一個(gè)例子。40Omitted
Variable
Bias遺漏變量的偏誤
121i11
ii1x
x
y
x
xSuppose
the
true
model
is
given
as假定真實(shí)模型如下y
0
1
x1
2
x2
u,but
we
estimate
y
0
1
x1
u,
then但
估計(jì)的是
y
0
1
x1
u,有41Omitted
Variable
Bias
(cont)遺漏變量的偏誤(續(xù))24221
i1
1
1
xi1
x1
0
x
x回想真實(shí)模型,有
yi
0
1xi1
2
xso
the
numerator
be所以分子為Omitted
Variable
Bias
(cont)遺漏變量的偏誤(續(xù))
1222111121i1i1i11
i
2i1E
x
x
x
x
xx
xx
x
x
x
i1 1
i
2
xi1
x1
ui
2
x
since
E(ui
)
0,taking
expectations
we
have由于E(ui
)
0,取期望, 得到43
12i11
i
2i1
1x
x
xx2
0
1
x1
then
x
xso
E
1
1
21Omitted
Variable
Bias
(cont)遺漏變量的偏誤(續(xù))Consider
the
regression
of
x2
on
x1考慮x2對(duì)x1的回歸44Omitted
Variable
Bias
Summary遺漏變量的偏誤 總結(jié)45Two
cases
where
biasisequal
to
zero
兩種偏誤為零的情形2
=
0,
that
isx2
doesn’t
really
belongin
model2
=0,也就是,x2實(shí)際上不屬于模型x1
and
x2
are
uncorrelated
inthe
sample樣本中x1與x2不相關(guān)
If
correlation
between
x2
,x1
and
x2
,y
isthe
same
direction,
bias
will
be
positive
如果x2與x1間相關(guān)性和x2與y間相關(guān)性同方向,偏誤為正。
If
correlation
between
x2
,x1
andx2
,y
is
theopposite
direction,
bias
will
be
negative
如果x2與x1間相關(guān)性和x2與y間相關(guān)性反方向,偏誤為負(fù)。Omitted
Variable
Bias
Summary遺漏變量的偏誤 總結(jié)When
E(1
)
1,we
say
that
1
hasupwardbias.當(dāng)E(1
)
1,
說(shuō)1上偏。When
E(1
)
1,
we
say
that1
hasdownwardbias.當(dāng)E(1
)
1,
說(shuō)1下偏。46Summaryof
Direction
ofBias偏誤方向總結(jié)47Corr(x1,
x2)
>
0Corr(x1,
x2)
<
02
>
0Positive
bias偏誤為正Negative
bias偏誤為負(fù)2
<
0Negative
bias偏誤為負(fù)Positive
bias偏誤為正Omitted-Variable
Bias
遺漏變量偏誤In
general
,
2
is
unknown;
and
when
a
variable
isomitted,
it
is
mainly
because
of
this
variable
isunobserved.
In
other
words,
we
do
not
know
thesign
of
Corr(x1,
x2).
Whatto
do?
但是,通常
不能觀測(cè)到2,而且,當(dāng)一個(gè)重要變量被缺省時(shí),主要原因也是因?yàn)樵撟兞繜o(wú)法觀測(cè),換句話說(shuō),無(wú)法準(zhǔn)確知道Corr(x1,x2)的符號(hào)。怎么辦呢?We
rely
on
economic
theories
and
intuition
tomake
a
educated
guess
ofthesign.
依靠經(jīng)濟(jì)理論和 來(lái)幫助 對(duì)相應(yīng)符號(hào)做出較好的估計(jì)。48Example:
hourly
wage
equation例子:小時(shí)工資方程Suppose
the
model
log(wage)
=
0+1educ+
2abil
+uis
estimated
with
abil
omitted.
What
is
the
direction
of
biasfor
1?假定模型
log(wage)=0+1educ+2abil+u,在估計(jì)時(shí)遺漏了abil。1的偏誤方向如何?
Since
in
general
ability
has
positive
partial
effect
on
yandability
and
education
years
is
positive
corrected,
we
expect1
to
have
a
upwardbias.因?yàn)橐话銇?lái)說(shuō)ability對(duì)y有正的局部效應(yīng),并且ability和education
years正相關(guān),所以預(yù)期1上偏。49The
More
General
Case更一般的情形Technically,
it
is
more
difficult
to
derive
the
signof
omitted
variable
bias
with
multiple
regressors.從技術(shù)上講,要推出多元回歸下缺省一個(gè)變量時(shí)各個(gè)變量的偏誤方向更加
。
But
remember
that
if
an
omitted
variable
haspartial
effects
on
y
and
it
is
correlated
with
atleast
one
of
the
regressors,
then
the
OLSestimators
of
all
coefficients
will
be
biased.需要記住,若有一個(gè)對(duì)y有局部效應(yīng)的變量被缺省,且該變量至少和一個(gè)解釋變量相關(guān),那么所有系數(shù)的OLS估計(jì)量都有偏。50The
More
General
Case更一般的情形ymodel2ytruey?model1
0
Suppose
corr(x1
,
x3It
is
notdifficult
to
beliestimator
of
2
.Will
1
be
un若corr(x1,x3
)
0,corr(x2
,x3
)
0很容易想到2是2的一個(gè)有偏估計(jì)量而1是有偏的嗎?51The
More
General
Case更一般的情形1
1 3
1
2
2?
??
,
1When
corr(x1
,
x2
)
0corr(x1
,
x3
)
0.There當(dāng)corr(x1
,x2
)
0,即
is
a
biasedestimato52—
有偏估計(jì)Variance
of
the
OLS
EstimatorsOLS估計(jì)量的方差Now
we
know
that
the
sampling
distribution
of
ourestimate
iscentered
around
the
true
parameter。現(xiàn)在
知道估計(jì)值的樣本分布是以真實(shí)參數(shù)為中心的。Want
to
think
about
how
spreadout
this
distribution
is還想知道這一分布的分散狀況。
Much
easier
to
think
about
this
variance
underanadditional
assumption,
so在一個(gè)新增假設(shè)下,度量這個(gè)方差就容易多了,有:53Assumption
MLR.5
(Homoskedasticity)假定MLR.5(同方差性)Assume
Homoskedasticity:同方差性假定:Var(u|x1,
x2,…,
xk)
=
2
.Means
that
the
variancein
the
errorterm,
u,conditionalontheexplanatorcombinations
ofbles,
is
the
same
for
alles
of
explanatory
variables.意思是,不管解釋變量出現(xiàn)怎樣的組合,誤差項(xiàng)u的條件方差都是一樣的。If
the
assumption
fails,
we
say
the
model
exhibitsheteroskedasticity.如果這個(gè)假定不成立, 說(shuō)模型存在異方差性。54Variance
of
OLS
(cont)OLS估計(jì)量的方差(續(xù))Let
x
standfor(x1,x2,…xk)
用x表示(x1,x2,…xk)
Assuming
that
Var(u|x)=2
also
implies
thatVar(y|
x)=2
假定Var(u|x)=2,也就意味著
Var(y|
x)=2
Assumption
MLR.1-5
are
collectively
known
asthe
Gauss-Markov
assumptions.假定MLR.1-5共同被稱為
-
假定55
22?jj2jjjjij
jand
R2
is
the
R2from
regressing
xj
on
all
other
x's
2Var
,
whereSST
1
RSSTj
xij
xTheorem
3.2
(Sampling
Variances
of
the
OLS
SlopeEstimators)定理3.2(OLS斜率估計(jì)量的抽樣方差)Given
the
Gauss-Markov
Assumptions給定
-
假定其中,SST
x
x
,R2是x
向所有其它x回歸所得到的R2j
j56Interpreting
Theorem
3.2對(duì)定理3.2的解釋57
Theorem
3.2
shows
that
the
variances
of
theestimated
slope
coefficients
are
influenced
by
threefactors:定理3.2顯示:估計(jì)斜率系數(shù)的方差受到三個(gè)因素的影響:The
error
variance誤差項(xiàng)的方差The
total
sample
variation總的樣本變異Linear
relationships
among
the
independent
variables解釋變量之間的線性相關(guān)關(guān)系Interpreting
Theorem
3.2:
The
Error
Variance對(duì)定理3.2的解釋(1):誤差項(xiàng)方差A(yù)
larger
2
implies
a
larger
variance
forthe
OLSestimators.更大的2意味著更大的OLS估計(jì)量方差。A
larger
2
means
more
noises
in
the
equation.更大的2意味著方程中的“噪音”越多。This
makes
it
more
difficult
toextract
theexact
partial
effectof
the
regressor
on
the
regressand.
這使得得到自變量對(duì)因變量的準(zhǔn)確局部效應(yīng)變得更加。Introducing
more
regressors
can
reduce
the
variance.
Butoften
this
is
not
possible,
neither
is
it
desirable.
引入 的解釋變量可以減小方差。但這樣做不僅不一定可能,而且也不一定總令人滿意。2
does
not
depends
on
sample
size.
2
不依賴于樣本大小58Interpreting
Theorem
3.2:
The
total
sample
variation對(duì)定理3.2的解釋(2):總的樣本變異A
larger
SSTj
implies
a
smaller
variance
for
the
estimators,andvice
versa.更大的SSTj意味著更小的估計(jì)量方差,反之亦然。Everything
else
being
equal,more
sample
variation
in
x
is
always
preferred.其它條件不變情況下,x的樣本方差越大越好。One
way
to
gain
more
sample
variation
is
to
increase
thesample
size.
增加樣本方差的
法是增加樣本容量。This
components
of
parameter
variance
depends
on
thesample
size.
參數(shù)方差的這一組成部分依賴于樣本容量。59Interpreting
Theorem
3.2:
multicollinearity對(duì)定理3.1的解釋(3):多重共線性60A
larger
R
2
implies
a
larger
variance
for
the
estimatorsjj更大的R
2意味著更大的估計(jì)量方差。jA
large
R
2
meansother
regressors
can
explain
much
of
the2variationsin
xj.如果Rj
較大,就說(shuō)明其它解釋變量解釋可以解釋較大部分的該變量。j
jWhen
R
2
is
very
close
to
1,
x
is
highly
correlated
with
other2regressors,
this
is
called
multicollinearity.
當(dāng)Rj
非常接近1時(shí),xj與其它解釋變量高度相關(guān),被稱為多重共線性。Severe
multicollinearity
means
the
variance
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年及未來(lái)5年市場(chǎng)數(shù)據(jù)中國(guó)武漢市寫字樓行業(yè)市場(chǎng)競(jìng)爭(zhēng)格局及發(fā)展趨勢(shì)預(yù)測(cè)報(bào)告
- 2025年大學(xué)網(wǎng)絡(luò)與新媒體(新媒體理論基礎(chǔ))試題及答案
- 禁毒培訓(xùn)課件
- 兒童性早熟的規(guī)范化治療策略
- 中國(guó)工業(yè)品電商高質(zhì)量發(fā)展白皮書(2025)-畢馬威
- 2025-2026學(xué)年度山東省菏澤市第一中學(xué)高一上學(xué)期1月質(zhì)量檢測(cè)歷史試題(含答案)
- 2026中共防城區(qū)委員會(huì)政法委員會(huì)招聘防城區(qū)專職網(wǎng)格員8人備考題庫(kù)(廣西)參考答案詳解
- 2026山東濱州市鄒平市人民法院招聘4人備考題庫(kù)附答案詳解
- 2026江蘇鹽城市射陽(yáng)縣黃沙港鎮(zhèn)人民政府招聘政府購(gòu)買服務(wù)工作人員6人備考題庫(kù)及1套完整答案詳解
- 2026年藍(lán)牙揚(yáng)聲器制作套件項(xiàng)目可行性研究報(bào)告
- 2026貴州省省、市兩級(jí)機(jī)關(guān)遴選公務(wù)員357人考試備考題庫(kù)及答案解析
- 兒童心律失常診療指南(2025年版)
- 北京通州產(chǎn)業(yè)服務(wù)有限公司招聘?jìng)淇碱}庫(kù)必考題
- 2026南水北調(diào)東線山東干線有限責(zé)任公司人才招聘8人筆試模擬試題及答案解析
- 伊利實(shí)業(yè)集團(tuán)招聘筆試題庫(kù)2026
- 2026年基金從業(yè)資格證考試題庫(kù)500道含答案(完整版)
- 動(dòng)量守恒定律(教學(xué)設(shè)計(jì))-2025-2026學(xué)年高二物理上冊(cè)人教版選擇性必修第一冊(cè)
- 網(wǎng)絡(luò)素養(yǎng)與自律主題班會(huì)
- 波形護(hù)欄工程施工組織設(shè)計(jì)方案
- 非靜脈曲張性上消化道出血管理指南解讀課件
- 內(nèi)窺鏡護(hù)理不良事件分析與防范措施
評(píng)論
0/150
提交評(píng)論