版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一上數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列函數(shù)中,滿足對定義域內(nèi)任意實數(shù),恒有的函數(shù)的個數(shù)為()①②③④A.1個 B.2個C.3個 D.4個2.已知,,則A. B.C. D.,3.若sinα=,α是第二象限角,則sin(2α+)=()A. B.C. D.4.已知,條件:,條件:,則是的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件5.已知扇形的周長為8,扇形圓心角的弧度數(shù)是2,則扇形的面積為()A.2 B.4C.6 D.86.已知函數(shù)滿足∶當(dāng)時,,當(dāng)時,,若,且,設(shè),則()A.沒有最小值 B.的最小值為C.的最小值為 D.的最小值為7.若函數(shù)在上是增函數(shù),則實數(shù)k的取值范圍是()A. B.C. D.8.把的圖象上各點的橫標(biāo)縮短為原來的(縱坐標(biāo)不變),再把所得圖象向右平移個單位長度,得到的圖象,則()A. B.C. D.9.已知集合,,則A. B.C. D.10.已知三條直線,,的斜率分別為,,,傾斜角分別為.若,則下列關(guān)系不可能成立的是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知=,則=_____.12.函數(shù)的圖像與直線y=a在(0,)上有三個交點,其橫坐標(biāo)分別為,,,則的取值范圍為_______.13.已知一個圓錐的母線長為1,其高與母線的夾角為45°,則該圓錐的體積為____________.14.函數(shù)是冪函數(shù),且在上是減函數(shù),則實數(shù)__________.15.已知函數(shù),則__________16.__________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)常數(shù)證明在上是減函數(shù),在上是增函數(shù);當(dāng)時,求的單調(diào)區(qū)間;對于中的函數(shù)和函數(shù),若對任意,總存在,使得成立,求實數(shù)a的值18.如圖,在棱長都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點.(1)求證:DE平面ABC;(2)求證:B1C⊥平面BDE.19.已知(1)化簡;(2)若是第三象限角,且,求的值20.定義在D上的函數(shù),如果滿足:存在常數(shù),對任意,都有成立,則稱是D上的有界函數(shù),其中M稱為函數(shù)的上界.(1)證明:在上有界函數(shù);(2)若函數(shù)在上是以3為上界的有界函數(shù),求實數(shù)a的取值范圍.21.已知函數(shù)(1)求的最小正周期;(2)將的圖象上的各點________得到的圖象,當(dāng)時,方程有解,求實數(shù)m的取值范圍在以下①、②中選擇一個,補在(2)中的橫線上,并加以解答,如果①、②都做,則按①給分.①向左平移個單位,再保持縱坐標(biāo)不變,橫坐標(biāo)縮短到原來的一半②縱坐標(biāo)保持不變,橫坐標(biāo)伸長到原來的2倍,再向右平移個單位
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】根據(jù)因為函數(shù)滿足對定義域內(nèi)任意實數(shù),恒有,可得函數(shù)的圖象是“下凸”,然后由函數(shù)圖象判斷.【詳解】因為函數(shù)滿足對定義域內(nèi)任意實數(shù),恒有,所以函數(shù)的圖象是“下凸”,分別作出函數(shù)①②③④的圖象,由圖象知,滿足條件的函數(shù)有③一個,故選:A2、D【解析】∵,,∴,,∴.故選3、D【解析】根據(jù),求出的值,再將所求式子展開,轉(zhuǎn)化成關(guān)于和的式子,然后代值得出結(jié)果【詳解】因為且為第二象限角,根據(jù)得,,再根據(jù)二倍角公式得原式=,將,代入上式得,原式=故選D【點睛】本題考查三角函數(shù)給值求值,在已知角的取值范圍時可直接用同角公式求出正余弦值,再利用和差公式以及倍角公式將目標(biāo)式轉(zhuǎn)化成關(guān)于和的式子,然后代值求解就能得出結(jié)果4、C【解析】分別求兩個命題下的集合,再根據(jù)集合關(guān)系判斷選項.【詳解】,則,,則,因為,所以是充分必要條件.故選:C5、B【解析】由給定條件求出扇形半徑和弧長,再由扇形面積公式求出面積得解.【詳解】設(shè)扇形所在圓半徑r,則扇形弧長,而,由此得,所以扇形的面積.故選:B6、B【解析】根據(jù)已知條件,首先利用表示出,然后根據(jù)已知條件求出的取值范圍,最后利用一元二次函數(shù)并結(jié)合的取值范圍即可求解.【詳解】∵且,則,且,∴,即由,∴,又∵,∴當(dāng)時,,當(dāng)時,,故有最小值.故選:B.7、C【解析】根據(jù)二次函數(shù)的對稱軸在區(qū)間的左邊,即可得到答案;【詳解】由題意得:,故選:C8、C【解析】根據(jù)三角函數(shù)的周期變換和平移變換的原理即可得解.【詳解】解:把的圖象上各點的橫標(biāo)縮短為原來的(縱坐標(biāo)不變),可得的函數(shù)圖像,再把所得圖象向右平移個單位長度,可得函數(shù),所以.故選:C.9、C【解析】先寫出A的補集,再根據(jù)交集運算求解即可.【詳解】因為,所以,故選C.【點睛】本題主要考查了集合的補集,交集運算,屬于容易題.10、D【解析】根據(jù)直線的斜率與傾斜角的關(guān)系即可求解.【詳解】解:由題意,根據(jù)直線的斜率與傾斜角的關(guān)系有:當(dāng)或時,或,故選項B可能成立;當(dāng)時,,故選項A可能成立;當(dāng)時,,故選項C可能成立;所以選項D不可能成立.故選:D.二、填空題:本大題共6小題,每小題5分,共30分。11、##0.6【解析】尋找角之間的聯(lián)系,利用誘導(dǎo)公式計算即可【詳解】故答案為:12、【解析】由x∈(0,)求出,然后,畫出正弦函數(shù)的大致圖像,利用圖像求解即可【詳解】由題意因為x∈(0,),則,可畫出函數(shù)大致的圖則由圖可知當(dāng)時,方程有三個根,由解得,解得,且點與點關(guān)于直線對稱,所以,點與點關(guān)于直線對稱,故由圖得,令,當(dāng)為x∈(0,)時,解得或,所以,,,解得,,則,即.故答案為:【點睛】關(guān)鍵點睛:解題關(guān)鍵在于利用x∈(0,),則畫出圖像,并利用對稱性求出答案13、##【解析】由題可得,然后利用圓錐的體積公式即得.【詳解】設(shè)圓錐的底面半徑為r,高為h,由圓錐的母線長為1,其高與母線的夾角為45°,∴,∴該圓錐的體積為.故答案為:.14、2【解析】根據(jù)函數(shù)為冪函數(shù)求參數(shù)m,討論所求得的m判斷函數(shù)是否在上是減函數(shù),即可確定m值.【詳解】由題設(shè),,即,解得或,當(dāng)時,,此時函數(shù)在上遞增,不合題意;當(dāng)時,,此時函數(shù)在上遞減,符合題設(shè).綜上,.故答案為:215、3【解析】16、2【解析】考點:對數(shù)與指數(shù)的運算性質(zhì)三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析;(3)【解析】利用定義證明即可;把看成整體,研究對勾函數(shù)的單調(diào)性以及利用復(fù)合函數(shù)的單調(diào)性的性質(zhì)得到該函數(shù)的單調(diào)性;對于任意的,總存在,使得可轉(zhuǎn)化成的值域為的值域的子集,建立關(guān)系式,解之即可【詳解】證明::設(shè),,且,,,,,當(dāng)時,即,當(dāng)時,即,當(dāng)時,,即,此時函數(shù)為減函數(shù),當(dāng)時,,即,此時函數(shù)為增函數(shù),故在上是減函數(shù),在上是增函數(shù);當(dāng)時,,,設(shè),則,,由可知在上是減函數(shù),在上是增函數(shù);,,即,,即在上是減函數(shù),在上是增函數(shù);由于減函數(shù),故,又由(2)得由題意,的值域為的值域的子集,從而有,解得【點睛】本題主要考查定義法證明函數(shù)單調(diào)性,利用單調(diào)性求函數(shù)的值域,以及函數(shù)恒成立問題,同時考查了轉(zhuǎn)化的思想和運算求解的能力,是中檔題18、(1)證明過程見解析;(2)證明過程見解析.【解析】(1)根據(jù)面面平行的判定定理,結(jié)合線面平行的判定定理、面面平行的性質(zhì)進行證明即可;(2)根據(jù)正三棱柱的幾何性質(zhì),結(jié)合面面垂直的性質(zhì)定理、線面垂直的判定定理、面面平行的性質(zhì)定理進行證明即可.【小問1詳解】設(shè)G是CC1的中點,連接,因為E為B1C的中點,所以,而,所以,因為平面ABC,平面ABC,所以平面ABC,同理可證平面ABC,因為平面,且,所以面平面ABC,而平面,所以DE平面ABC;【小問2詳解】設(shè)是的中點,連接,因為E為B1C的中點,所以,而,所以,由(1)可知:面平面ABC,平面平面,平面平面,因此,在正三棱柱ABC-A1B1C1中,平面平面ABC,而平面平面ABC,因為ABC是正三角形,是的中點,所以,因此平面,而平面,因此,而,所以,因為正三棱柱ABC-A1B1C1中棱長都相等,所以,而E分別為B1C的中點,所以,而平面BDE,,所以B1C⊥平面BDE.19、(1);(2).【解析】(1)利用誘導(dǎo)公式化簡==;(2)由誘導(dǎo)公式可得,再利用同角三角函數(shù)關(guān)系求出即可試題解析:(1)(2)∵,∴,又第三象限角,∴,∴點睛:(1)三角函數(shù)式化簡的思路:①切化弦,統(tǒng)一名;②用誘導(dǎo)公式,統(tǒng)一角;③用因式分解將式子變形,化為最簡(2)解題時要熟練運用誘導(dǎo)公式和同角三角函數(shù)基本關(guān)系式,其中確定相應(yīng)三角函數(shù)值的符號是解題的關(guān)鍵.20、(1)證明見解析(2)【解析】(1)根據(jù),利用求解單調(diào)性求解;(2)根據(jù)在上是以3為上界的有界函數(shù),令,則,轉(zhuǎn)化,在時恒成立求解.【小問1詳解】解:,則在上是嚴(yán)格增函數(shù),故,即,故,故是有界函數(shù);【小問2詳解】因為在上是以3為上界的有界函數(shù),所以在上恒成立,令,則,所以在時恒成立,所以,在時恒成立,函數(shù)在上嚴(yán)格遞減,所以;函數(shù)在上嚴(yán)格遞增,所以.所以實數(shù)a的取值范圍是.21、(1);(2)答案見解析.【解析】(1)根據(jù)三角恒等變換化簡,再求其最小正周期即可;(2)選擇
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電石爐安全生產(chǎn)管理制度
- 線路板生產(chǎn)安全管理制度
- 安全生產(chǎn)四級責(zé)任制度
- 印刷安全生產(chǎn)責(zé)任制度
- 2026鷹潭月湖恒通村鎮(zhèn)銀行春季員工招聘備考考試試題附答案解析
- 紅薯生產(chǎn)期澆水管理制度
- 合作生產(chǎn)管理制度范本
- 面筋生產(chǎn)管理制度范本
- 2026江蘇南京大學(xué)XZ2026-011地球科學(xué)與工程學(xué)院秘書招聘備考考試題庫附答案解析
- 安全生產(chǎn)開工第一課制度
- 駱駝的養(yǎng)殖技術(shù)與常見病防治
- 基層醫(yī)療資源下沉的實踐困境與解決路徑實踐研究
- 2025及未來5-10年高壓管匯項目投資價值市場數(shù)據(jù)分析報告
- 2025年衛(wèi)生人才評價考試(臨床醫(yī)學(xué)工程技術(shù)中級)歷年參考題庫含答案
- 2025年道路運輸安全員兩類人員試題庫及答案
- 高溫熔融金屬冶煉安全知識培訓(xùn)課
- 遼寧中考數(shù)學(xué)三年(2023-2025)真題分類匯編:專題06 幾何與二次函數(shù)壓軸題 解析版
- 湖南省5年(2021-2025)高考物理真題分類匯編:專題11 近代物理(原卷版)
- 保密協(xié)議書 部隊
- 螺桿泵知識點培訓(xùn)課件
- T-CCTASH 003-2025 散貨機械抓斗的使用要求
評論
0/150
提交評論