版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
外文資料與中文翻譯外文資料:EvaluationofHonedCylinderBoresF.PuenteLeonDesignofSystemsonSilicon(DS2),ParqueTecnologicode
Valencia,C./CharlesRobertDarwin2,E-46980Paterna(Valencia),Spain
SubmittedbyG..Spur(1),Berlin,GermanyAbstractThequalityofthehoningtextureoncylinderboresofcombustionenginesplaysanimportantrolewithrespecttooilconsumption,noxiousemissions,andrunningperformance.Toevaluatehonedsurfacesobjectively,featuresdescribingthesurfacetextureareextractedfrom2-Ddataofthesurface.Thepaperfocusesontwocrucialstagesofthedataanalysis:thepreprocessing,whichaimsatsuppressingirrele-vantcomponentsandenhancingtheinformationofinterest,andthefeatureextraction,whichyieldsreliablenumericalestimatesofthesurfacecharacteristicsofinterest,likethehoningangle,groovepa-rameters,surfacedefectsetc.Theassessmentresultscaneasilybeadaptedtouser-specificratings.Keywords:Honing,Surfacetexture,AutomatedvisualinspectionINTRODUCTIONCylinderboresofcombustionenginesarefinishedbyhoning.Theresultingsurfacetexturemainlyconsistsoftwobandsofhelicalgroovesplacedstochasticallyandappearingatdifferentanglestothecylinderaxis.Thetexturequalityishighlyimportantfordryoperationproperties,oilconsumption,noxiousemissions,andrunningperformance.Uptonow,expertsarestillratinghonedsurfacesvisuallybasedonmicroscopicimages.Thismethodistedious,subjective,andtimeconsuming.Togetobjectiveandreproducibleresults,anautomatedmethodofinspectionisnecessary.INSPECTIONAPPROACHSurfacedataTherearebasicallydifferentwaystomeasurethetextureofahonedsurface;seeTable1.Typically,amechanicalstylusonlyperformsaI-Dmeasurementofthesurfaceprofile.Incontrasttothis,greylevelimagesandopticalprofilometersprovide2-Ddatainareasonableamountoftime.Becausethelateral-geometricfeaturesofhoningtexturescanonlybeanalysedwith2-Ddata,inthefollowingwewillconcentrateonsuchkindsofdata.Othercharacteris-ticsrelatedtothedifferentmeasurementprinciplesinvestigatedarealsoincludedinthistable.Asignalmodeldescribingtheessentialcharacteristicsofahoningtextureconstitutesthebasisoftheevaluationapproachpresentedinthispaper.Basedonthismodel,clearandmathematicallywell-definedfeaturesareintroduced,whichenableareproducibleandobjectiveassessmentofthetexture.Thisstrategydiffersfrommanypopularmethods-suchasthoserelyingonneuralnetworks-,whichareoftentreatedasa'blackbox'[I].ThefeatureschosenareinspiredbytheHoningAtlas[2],bymanyopinionsofexperts,andhavealsobeenex-tendedbyaddingnewvolumetricparametersforthecaseofanalysingprofiledata.Thisresultsinanextensivesetoffeaturesthatcanbecustomizedtomatchtheneedsofindividualusers.PropertiesofhoningtexturesFigure1showssomeofthepropertiesofhoningtex-tures,baseduponwhichfeaturesaretobedefined.Themostpopularonesaretheroughnessparameters,suchasthosebasedontheBearingRatioCurve(AbbottCurve)[3],andR,,R,andR,,[4].However,dealingwithhonedsurfaces,itisimportanttodefinefeaturesthattakethelateralgeometryintoaccount.Thisway,mostrelevanttexturepeculiaritiescanbedescribed,suchasthehoningangle,materialsmearings,grooveinterrupts,straygrooves,holes,foreignbodies,andflakes,asshowninFigure1.Inaddition,featuresdescribingthebalanceofgrooves,presenceofplateaus,shapeofgrooves,cracks,residualturninggrooves,andchattermarksarealsoneeded.AutomatedinspectionFigure2showsanoverviewoftheabilitiesandaimsofautomatedinspectioninqualitycontrolappliedtothehoningprocess.A2-Dor3-Dsensorprovidesdatag(x)ofthehonedsurface,where
x=(~,yE)R~2denotesthelateralspatialcoordinates.Thegreycolouredblocksofthediagramarepartofthesensordataprocessing.Theoutputsofthesystemcanbeusedsimplyasastatementaboutsurfacequality,togivealarmscausinganinterruptofthemachiningprocess,oritcanbefedbackviaacontrollertoregulatethehoningprocess,becausethehoningtexturecontainsinformationaboutbothfunctional-ityandalsomachiningprocesdndependentlyofthefactwhetherapost-honingbrushingisperformedornot.Inthefollowingsections,wewillfocusontwocrucialstagesoftheautomatedinspection:thepreprocessingofthesensordataandthefeatureextraction,andwewillgivesomeexamplestothesesteps.PREPROCESSINGThegoalofthepreprocessingistosuppressirrelevantcomponents,namelytheinhomogeneitiesi(x)andthedisturbancesb(x),whileenhancingtheinformationofinterest,i.e.thetexturet(x).Inthecaseofacquisitionofimagedata,theinhomogeneitiesi(x)couldbeduetoMeehanicalstylusGreyleveHimageOpticalprofilanbetryMeasurementregionVD△口2-DDepthinformeflorYsbNaYesLaberalgeometrioinfbrrrisiiDnNdYesYesCoveringtheenlireEurfaDBVerytimH-cansumiing眥怖hreasennoieeffortVeryijmE-cansumingComputationalprocessingexpenseTowHighHighNnn-cflntacrmeasurempntNaYesYesStandardizedparametersYesNdYesTable1:Comparisonbetweenmechanicalstylusdevices,greylevelimages,andopticalprofilometersgreyironcylinderMdrillingiturningm日chin巳settings由區(qū)dim
ofun^anljed
pmcessstatesatermsMdrillingiturningm日chin巳settings由區(qū)dim
ofun^anljed
pmcessstatesaterms-g'LlGVCn-i:hatterirqetc——>honingprocesspr叩fk跪ipffeatu'Bestoction—leoinngmachirBsettingsquarrttative2-D/3-Dwfiser一」「SPCtimeseriesrahonirgdesiredvaluesCD^trolle.r伯Mln白cescrictcrstrend-,:iJpj'LmeterjFigure2:Automatedinspectionofhonedsurfaces.2-DgreyI敢elmage2-DSEMmmgeFigure1:Honingtexturesshowinglateralfeaturesanddefects:(a)materialsmearings,groove
interrupts;2-DgreyI敢elmage2-DSEMmmgesignalofinterestinversetransformseparationtransformIrrelevantComponentsFigure3:Principleofthepreprocessing.spatialvariationsofsurfaceillumination.Othercompo-nentsassignedtothedisturbancesb(x)includee.g.deviationsfromtheidealcourseofthegroovesanddefects,suchasmaterialsmearings,flakesetc.Weuseasignalmodelthatdescribesthesensordatag(x)asacombinationofthetexturet(x)andtheirrele-vantcomponentsi(x)andb(x):Tobeabletorecovertheinformationofinterestt(x),anassumptionisnecessary:thedifferentcomponentshavetobemathematicallydistinguishable.AsshowninFigure3,atransformmapstherawdatag(x)suchthatastrictseparationoftheircomponentsisobtained.Then,theundesiredcomponentsaresup-pressed,andfinallyaninversetransformisperformedthatyieldstheresultsofthepreprocessing.Thebenefitsofthisprocedureincludeasimplificationofthefeatureextraction,andamorerobustimageprocess-ing,asshowninthefollowingexamples.3.1HomogenizationWhenagroovetextureisdegradedbyanintensityinhomogeneityi(x)duetothedataacquisitionprocess,e.g.duetoaninhomogeneouslighting,ahomogenizationcanbeperformedtosuppressthisunwantedcomponent[6].Figure4showsanexampleofthisoperationforaplaningtexture.Ontheleftsideofthefigure,theoriginaltextureisshown.Thecentralimagerepresentstheresultofastandardhomogenizationmethod-thehomomorphicFigure4:Homogenization:(left)planningtexture;(centre)homomorphicfiltering;(right)homogenizationresult.Figure5:Texturedecomposition:(left)honingtexture;(centre)groovetexture;(right)backgroundtexture.—profileJpcqfiIp+—Icvz-passUlberlineFigure6:Referencesurface:problemswithconventional
low-passfilters.filtering,whichassumesamultiplicativecombinationoftextureandinhomogeneity.Especiallyintheupperleftcorner,thisimageshowsaverypoorcontrast.Theimageontherightresultsfromthemodel-basedapproachaccordingtoFigure3.Inthiscase,ahomogenizationofthelocalmeanvalueandthelocalcontrasthasbeenperformedbasedonamodelthatconsidersamixedadditiveandmultiplicativecombinationofbothsignalofinterestanddisturbinginhomogeneity[6].Theresultisclearlymorehomogeneousthantheformeroneandenablesamorerobustanalysisofthetexture.3.2TexturedecompositionThenextexampleconcernsthedecompositionofthehoningtexturetoeasethefeatureextraction.Duetothecomplexityofthehoningtexture,theextractionofrele-vantfeaturesneededfortheinspectiontaskcouldbesimplifiedconsiderably,ifthepartialtexturesconstitutingthesignalg(x)accordingtoEq.(1)wereavailable.Thus,itwouldbeadvantageoustodevelopamethodtosepa-ratethetextureg(x)intoacomponentt(x)containingthestraightstructures(i.e.thegrooves)andanotheroneb(x)showingtheisotropiccomponents(i.e.thebackground,includingdefectsandobjects).Inthiscase,ahomogene-oustexturewillbeassumed.Fortunately,averyefficientalgorithmtoperformthisseparationalreadyexists[7].TheleftsideofFigure5showsanoriginalhoningtexture;theothertwoimagesrepresenttheresultsoftheadaptivetexturedecomposi-tioncomputedwiththisalgorithm.Inthegroovetexture,onlytheidealgroovescanbeseen,whereastheback-groundimagecontainsalldeviationsfromtheidealgroovecourseaswellasdefectsandotherobjects.Foramorecomprehensivediscussionoftheseparationalgo-rithm,interestedreadersarereferredto[7]Figure7:Originalhonedsurfaceandreferencesurface.greylevelimageperiodogramisdalprojectionP:P2F^gurs8.Eslirnartionofhoningangle.ReferencesurfaceFinally,thedefinitionofareferencesurfacetoeliminatetheshapecomponentwillbepresented.ThegraphinFigure6representsatracethroughtheprofileofahonedsurface.Thesmoothlinedescribestheshapecomponenttobesuppressed.However,conventionallow-passfiltersleadtodistortionsintheareaofthegrooves,asshowninthecaseofthedashedline.Wehavefacedthisproblembydevelopinganiterative2-Dfilter-amodifiedGaus-sia
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 智研咨詢發(fā)布-2025年中國手辦?行業(yè)產(chǎn)業(yè)鏈全景分析及發(fā)展趨勢預(yù)測報告
- 生產(chǎn)安全教育培訓(xùn)會議課件
- 企業(yè)碳排放統(tǒng)計、核算制度
- 人員薪酬體系制度
- 衛(wèi)生院醫(yī)保組織制度
- 衛(wèi)生院科室信息公示制度
- 應(yīng)遵守勞動安全衛(wèi)生制度
- 2025-2026學(xué)年黑龍江省龍東十校聯(lián)盟高一上學(xué)期期中考試語文試題
- 2025-2026學(xué)年河南省信陽市羅山縣高一上學(xué)期期中考試語文試題
- 2025-2026學(xué)年河北省NT名校聯(lián)考高二上學(xué)期期中考試語文試題
- 特技演員聘用合同
- 第25課《活板》同步練習(xí)(含答案)
- 北京市XXXX年度“小學(xué)數(shù)學(xué)測試方案”培訓(xùn)課件
- 數(shù)學(xué)中考復(fù)習(xí)資料四邊形
- 壓力容器磁粉檢測通用工藝規(guī)程
- 國家開放大學(xué)《基礎(chǔ)教育課程改革專題》形考任務(wù)(13)試題及答案解析
- 浙江省高級法院公布十大民間借貸典型案例
- 兒童舌診解析
- GB/T 10760.1-2003離網(wǎng)型風(fēng)力發(fā)電機(jī)組用發(fā)電機(jī)第1部分:技術(shù)條件
- 古代建筑發(fā)展概況課件
- 鋼結(jié)構(gòu)涂層附著力試驗檢測記錄表
評論
0/150
提交評論