版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數(shù)學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若雙曲線:的一條漸近線方程為,則()A. B. C. D.2.給甲、乙、丙、丁四人安排泥工、木工、油漆三項工作,每項工作至少一人,每人做且僅做一項工作,甲不能安排木工工作,則不同的安排方法共有()A.12種 B.18種 C.24種 D.64種3.已知F是雙曲線(k為常數(shù))的一個焦點,則點F到雙曲線C的一條漸近線的距離為()A.2k B.4k C.4 D.24.《算數(shù)書》竹簡于上世紀八十年代在湖北省江陵縣張家山出土,這是我國現(xiàn)存最早的有系統(tǒng)的數(shù)學典籍.其中記載有求“囷蓋”的術:“置如其周,令相承也.又以高乘之,三十六成一”.該術相當于給出了由圓錐的底面周長與高,計算其體積的近似公式.它實際上是將圓錐體積公式中的圓周率近似取為3.那么近似公式相當于將圓錐體積公式中的圓周率近似取為()A. B. C. D.5.函數(shù)的圖象大致是()A. B.C. D.6.執(zhí)行如圖所示的程序框圖,則輸出的結果為()A. B. C. D.7.用電腦每次可以從區(qū)間內自動生成一個實數(shù),且每次生成每個實數(shù)都是等可能性的.若用該電腦連續(xù)生成3個實數(shù),則這3個實數(shù)都小于的概率為()A. B. C. D.8.若集合M={1,3},N={1,3,5},則滿足M∪X=N的集合X的個數(shù)為()A.1 B.2C.3 D.49.山東煙臺蘋果因“果形端正、色澤艷麗、果肉甜脆、香氣濃郁”享譽國內外.據統(tǒng)計,煙臺蘋果(把蘋果近似看成球體)的直徑(單位:)服從正態(tài)分布,則直徑在內的概率為()附:若,則,.A.0.6826 B.0.8413 C.0.8185 D.0.954410.已知分別為雙曲線的左、右焦點,點是其一條漸近線上一點,且以為直徑的圓經過點,若的面積為,則雙曲線的離心率為()A. B. C. D.11.已知函數(shù),且的圖象經過第一、二、四象限,則,,的大小關系為()A. B.C. D.12.已知,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,已知點,,若圓上有且僅有一對點,使得的面積是的面積的2倍,則的值為_______.14.如圖所示,直角坐標系中網格小正方形的邊長為1,若向量、、滿足,則實數(shù)的值為_______.15.在平面直角坐標系xOy中,A,B為x軸正半軸上的兩個動點,P(異于原點O)為y軸上的一個定點.若以AB為直徑的圓與圓x2+(y-2)2=1相外切,且∠APB的大小恒為定值,則線段OP的長為_____.16.已知函數(shù),則下列結論中正確的是_________.①是周期函數(shù);②的對稱軸方程為,;③在區(qū)間上為增函數(shù);④方程在區(qū)間有6個根.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知四邊形的直角梯形,∥BC,,,,為線段的中點,平面,,為線段上一點(不與端點重合).(1)若,(?。┣笞C:PC∥平面;(ⅱ)求平面與平面所成的銳二面角的余弦值;(2)否存在實數(shù)滿足,使得直線與平面所成的角的正弦值為,若存在,確定的值,若不存在,請說明理由.18.(12分)某生物硏究小組準備探究某地區(qū)蜻蜓的翼長分布規(guī)律,據統(tǒng)計該地區(qū)蜻蜓有兩種,且這兩種的個體數(shù)量大致相等,記種蜻蜓和種蜻蜓的翼長(單位:)分別為隨機變量,其中服從正態(tài)分布,服從正態(tài)分布.(Ⅰ)從該地區(qū)的蜻蜓中隨機捕捉一只,求這只蜻蜓的翼長在區(qū)間的概率;(Ⅱ)記該地區(qū)蜻蜓的翼長為隨機變量,若用正態(tài)分布來近似描述的分布,請你根據(Ⅰ)中的結果,求參數(shù)和的值(精確到0.1);(Ⅲ)在(Ⅱ)的條件下,從該地區(qū)的蜻蜓中隨機捕捉3只,記這3只中翼長在區(qū)間的個數(shù)為,求的分布列及數(shù)學期望(分布列寫出計算表達式即可).注:若,則,,.19.(12分)設不等式的解集為M,.(1)證明:;(2)比較與的大小,并說明理由.20.(12分)某校為了解校園安全教育系列活動的成效,對全校學生進行一次安全意識測試,根據測試成績評定“合格”、“不合格”兩個等級,同時對相應等級進行量化:“合格”記分,“不合格”記分.現(xiàn)隨機抽取部分學生的成績,統(tǒng)計結果及對應的頻率分布直方圖如下所示:等級不合格合格得分頻數(shù)624(Ⅰ)若測試的同學中,分數(shù)段內女生的人數(shù)分別為,完成列聯(lián)表,并判斷:是否有以上的把握認為性別與安全意識有關?是否合格性別不合格合格總計男生女生總計(Ⅱ)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學生中,共選取人進行座談,現(xiàn)再從這人中任選人,記所選人的量化總分為,求的分布列及數(shù)學期望;(Ⅲ)某評估機構以指標(,其中表示的方差)來評估該校安全教育活動的成效,若,則認定教育活動是有效的;否則認定教育活動無效,應調整安全教育方案.在(Ⅱ)的條件下,判斷該校是否應調整安全教育方案?附表及公式:,其中.21.(12分)交通部門調查在高速公路上的平均車速情況,隨機抽查了60名家庭轎車駕駛員,統(tǒng)計其中有40名男性駕駛員,其中平均車速超過的有30人,不超過的有10人;在其余20名女性駕駛員中,平均車速超過的有5人,不超過的有15人.(1)完成下面的列聯(lián)表,并據此判斷是否有的把握認為,家庭轎車平均車速超過與駕駛員的性別有關;平均車速超過的人數(shù)平均車速不超過的人數(shù)合計男性駕駛員女性駕駛員合計(2)根據這些樣本數(shù)據來估計總體,隨機調查3輛家庭轎車,記這3輛車中,駕駛員為女性且平均車速不超過的人數(shù)為,假定抽取的結果相互獨立,求的分布列和數(shù)學期望.參考公式:其中臨界值表:0.0500.0250.0100.0050.0013.8415.0246.6357.87910.82822.(10分)如圖,四棱錐中,底面是菱形,對角線交于點為棱的中點,.求證:(1)平面;(2)平面平面.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據雙曲線的漸近線列方程,解方程求得的值.【詳解】由題意知雙曲線的漸近線方程為,可化為,則,解得.故選:A【點睛】本小題主要考查雙曲線的漸近線,屬于基礎題.2、C【解析】
根據題意,分2步進行分析:①,將4人分成3組,②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,將剩下的2組全排列,安排其他的2項工作,由分步計數(shù)原理計算可得答案.【詳解】解:根據題意,分2步進行分析:①,將4人分成3組,有種分法;②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,有2種情況,將剩下的2組全排列,安排其他的2項工作,有種情況,此時有種情況,則有種不同的安排方法;故選:C.【點睛】本題考查排列、組合的應用,涉及分步計數(shù)原理的應用,屬于基礎題.3、D【解析】
分析可得,再去絕對值化簡成標準形式,進而根據雙曲線的性質求解即可.【詳解】當時,等式不是雙曲線的方程;當時,,可化為,可得虛半軸長,所以點F到雙曲線C的一條漸近線的距離為2.故選:D【點睛】本題考查雙曲線的方程與點到直線的距離.屬于基礎題.4、C【解析】
將圓錐的體積用兩種方式表達,即,解出即可.【詳解】設圓錐底面圓的半徑為r,則,又,故,所以,.故選:C.【點睛】本題利用古代數(shù)學問題考查圓錐體積計算的實際應用,考查學生的運算求解能力、創(chuàng)新能力.5、B【解析】
根據函數(shù)表達式,把分母設為新函數(shù),首先計算函數(shù)定義域,然后求導,根據導函數(shù)的正負判斷函數(shù)單調性,對應函數(shù)圖像得到答案.【詳解】設,,則的定義域為.,當,,單增,當,,單減,則.則在上單增,上單減,.選B.【點睛】本題考查了函數(shù)圖像的判斷,用到了換元的思想,簡化了運算,同學們還可以用特殊值法等方法進行判斷.6、D【解析】循環(huán)依次為直至結束循環(huán),輸出,選D.點睛:算法與流程圖的考查,側重于對流程圖循環(huán)結構的考查.先明晰算法及流程圖的相關概念,包括選擇結構、循環(huán)結構、偽代碼,其次要重視循環(huán)起點條件、循環(huán)次數(shù)、循環(huán)終止條件,更要通過循環(huán)規(guī)律,明確流程圖研究的數(shù)學問題,是求和還是求項.7、C【解析】
由幾何概型的概率計算,知每次生成一個實數(shù)小于1的概率為,結合獨立事件發(fā)生的概率計算即可.【詳解】∵每次生成一個實數(shù)小于1的概率為.∴這3個實數(shù)都小于1的概率為.故選:C.【點睛】本題考查獨立事件同時發(fā)生的概率,考查學生基本的計算能力,是一道容易題.8、D【解析】可以是共4個,選D.9、C【解析】
根據服從的正態(tài)分布可得,,將所求概率轉化為,結合正態(tài)分布曲線的性質可求得結果.【詳解】由題意,,,則,,所以,.故果實直徑在內的概率為0.8185.故選:C【點睛】本題考查根據正態(tài)分布求解待定區(qū)間的概率問題,考查了正態(tài)曲線的對稱性,屬于基礎題.10、B【解析】
根據題意,設點在第一象限,求出此坐標,再利用三角形的面積即可得到結論.【詳解】由題意,設點在第一象限,雙曲線的一條漸近線方程為,所以,,又以為直徑的圓經過點,則,即,解得,,所以,,即,即,所以,雙曲線的離心率為.故選:B.【點睛】本題主要考查雙曲線的離心率,解決本題的關鍵在于求出與的關系,屬于基礎題.11、C【解析】
根據題意,得,,則為減函數(shù),從而得出函數(shù)的單調性,可比較和,而,比較,即可比較.【詳解】因為,且的圖象經過第一、二、四象限,所以,,所以函數(shù)為減函數(shù),函數(shù)在上單調遞減,在上單調遞增,又因為,所以,又,,則|,即,所以.故選:C.【點睛】本題考查利用函數(shù)的單調性比較大小,還考查化簡能力和轉化思想.12、D【解析】
分別解出集合然后求并集.【詳解】解:,故選:D【點睛】考查集合的并集運算,基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
寫出所在直線方程,求出圓心到直線的距離,結合題意可得關于的等式,求解得答案.【詳解】解:直線的方程為,即.圓的圓心到直線的距離,由的面積是的面積的2倍的點,有且僅有一對,可得點到的距離是點到直線的距離的2倍,可得過圓的圓心,如圖:由,解得.故答案為:.【點睛】本題考查直線和圓的位置關系以及點到直線的距離公式應用,考查數(shù)形結合的解題思想方法,屬于中檔題.14、【解析】
根據圖示分析出、、的坐標表示,然后根據坐標形式下向量的數(shù)量積為零計算出的取值.【詳解】由圖可知:,所以,又因為,所以,所以.故答案為:.【點睛】本題考查向量的坐標表示以及坐標形式下向量的數(shù)量積運算,難度較易.已知,若,則有.15、【解析】分析:設O2(a,0),圓O2的半徑為r(變量),OP=t(常數(shù)),利用差角的正切公式,結合以AB為直徑的圓與圓x2+(y-2)2=1相外切.且∠APB的大小恒為定值,即可求出線段OP的長.詳解:設O2(a,0),圓O2的半徑為r(變量),OP=t(常數(shù)),則∵∠APB的大小恒為定值,
∴t=,∴|OP|=.故答案為點睛:本題考查圓與圓的位置關系,考查差角的正切公式,考查學生的計算能力,屬于中檔題.16、①②④【解析】
由函數(shù),對選項逐個驗證即得答案.【詳解】函數(shù),是周期函數(shù),最小正周期為,故①正確;當或時,有最大值或最小值,此時或,即或,即.的對稱軸方程為,,故②正確;當時,,此時在上單調遞減,在上單調遞增,在區(qū)間上不是增函數(shù),故③錯誤;作出函數(shù)的部分圖象,如圖所示方程在區(qū)間有6個根,故④正確.故答案為:①②④.【點睛】本題考查三角恒等變換,考查三角函數(shù)的性質,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(?。┳C明見解析(ⅱ)(2)存在,【解析】
(1)(i)連接交于點,連接,,依題意易證四邊形為平行四邊形,從而有,,由此能證明PC∥平面(ii)推導出,以為原點建立空間直角坐標系,利用向量法求解;(2)設,求出平面的法向量,利用向量法求解.【詳解】(1)(?。┳C明:連接交于點,連接,,因為為線段的中點,所以,因為,所以因為∥所以四邊形為平行四邊形.所以又因為,所以又因為平面,平面,所以平面.(ⅱ)解:如圖,在平行四邊形中因為,,所以以為原點建立空間直角坐標系則,,,所以,,,平面的法向量為設平面的法向量為,則,即,取,得,設平面和平面所成的銳二面角為,則所以銳二面角的余弦值為(2)設所以,,設平面的法向量為,則,取,得,因為直線與平面所成的角的正弦值為,所以解得所以存在滿足,使得直線與平面所成的角的正弦值為.【點睛】此題二查線面平行的證明,考查銳二面角的余弦值的求法,考查滿足線面角的正弦值的點是否存在的判斷與求法,考查空間中線線,線面,面面的位置關系等知識,考查了推理能力與計算能力,屬于中檔題.18、(Ⅰ);(Ⅱ),;(Ⅲ)詳見解析.【解析】
(Ⅰ)由題知這只蜻蜓是種還是種的可能性是相等的,所以,代入數(shù)值運算即可;(Ⅱ)可判斷均值應為,再結合(1)和題干備注信息可得,進而求解;(Ⅲ)求得,該分布符合二項分布,故,列出分布列,計算出對應概率,結合即可求解;【詳解】(Ⅰ)記這只蜻蜓的翼長為.因為種蜻蜓和種蜻蜓的個體數(shù)量大致相等,所以這只蜻蜓是種還是種的可能性是相等的.所以.(Ⅱ)由于兩種蜻蜓的個體數(shù)量相等,的方差也相等,根據正態(tài)曲線的對稱性,可知由(Ⅰ)可知,得.(Ⅲ)設蜻蜓的翼長為,則.由題有,所以.因此的分布列為.【點睛】本題考查正態(tài)分布基本量的求解,二項分布求解離散型隨機變量分布列和期望,屬于中檔題19、(1)證明見解析;(2).【解析】試題分析:(1)首先求得集合M,然后結合絕對值不等式的性質即可證得題中的結論;(2)利用平方做差的方法可證得|1-4ab|>2|a-b|.試題解析:(Ⅰ)證明:記f(x)=|x-1|-|x+2|,則f(x)=,所以解得-<x<,故M=(-,).所以,||≤|a|+|b|<×+×=.(Ⅱ)由(Ⅰ)得0≤a2<,0≤b2<.|1-4ab|2-4|a-b|2=(1-8ab+16a2b2)-4(a2-2ab+b2)=4(a2-1)(b2-1)>0.所以,|1-4ab|>2|a-b|.20、(Ⅰ)詳見解析;(Ⅱ)詳見解析;(Ⅲ)不需要調整安全教育方案.【解析】
(I)根據題目所給數(shù)據填寫好列聯(lián)表,計算出的值,由此判斷出在犯錯誤概率不超過的前提下,不能認為性別與安全測試是否合格有關.(II)利用超幾何分布的計算公式,計算出的分布列并求得數(shù)學期望.(III)由(II)中數(shù)據,計算出,進而求得的值,從而得出該校的安全教育活動是有效的,不需要調整安全教育方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 內卷介紹教學課件
- 內兒科培訓內容課件
- 內個人介紹教學課件
- 漢服活動團建策劃方案(3篇)
- 游戲廣場活動策劃方案(3篇)
- 維保部獎懲管理制度(3篇)
- 超市聯(lián)營戶進貨管理制度(3篇)
- 銀行餐廳食材管理制度(3篇)
- 高校資產日常管理制度建設(3篇)
- 《GAT 1386-2017刑事案件偵查關聯(lián)關系數(shù)據項》專題研究報告
- 2026南水北調東線山東干線有限責任公司人才招聘8人筆試模擬試題及答案解析
- 伊利實業(yè)集團招聘筆試題庫2026
- 2026年基金從業(yè)資格證考試題庫500道含答案(完整版)
- 動量守恒定律(教學設計)-2025-2026學年高二物理上冊人教版選擇性必修第一冊
- 網絡素養(yǎng)與自律主題班會
- 波形護欄工程施工組織設計方案
- 非靜脈曲張性上消化道出血管理指南解讀課件
- GB/T 10922-202555°非密封管螺紋量規(guī)
- 內窺鏡護理不良事件分析與防范措施
- 2025年《電信業(yè)務投訴處理》知識考試題庫及答案解析
- 術后惡心嘔吐(PONV)診療指南解讀
評論
0/150
提交評論