版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
(完整)化工熱力學(xué)答案(第三版)(完整)化工熱力學(xué)答案(第三版)化工熱力學(xué)課后答案(第三版)陳鐘秀編著2-11kmol0.12465()()R-K()普遍化關(guān)系式。=0。1246m3/1kmol=124.6c/mol查附錄二得甲烷的臨界參數(shù):Tc
=190。6K
=4.600MPa c
=99cm3/molcω=0。008理想氣體方程P=RT/V=8.314×323。15/124。6×1—=21.56MPaR—Ka0.42748
R2TcPc
0.42748
8.3142190.62.54.6106
3.222Pam6K0.5mol2b0.08664
RTPc0.08664c
8.314190.64.6106
2.985105m3mol1∴P RTVb
aT0.VVb 8.314323.15 3.22212.462.985105 323.150.512.4610512.462.985105=19.04MPa普遍化關(guān)系式TTTr
323.15190.61.695 Vr
VVc
124.6991.259<2∴利用普壓法計(jì)算,ZZ0Z1∵ PZRT
PPV crc∴ ZPVPcRT rPV 4.610612.46105Z c PRT r
8.314
P0.2133Pr r迭代:令Z=→P=4.687又Tr=1.695,查附錄三得:=0.8938 Z1=。46230 r0ZZ0Z1=0。8938+0.008×0。4623=0。8975此時(shí),P=Pc
P4。6×4.687=21.56MParZ=0。8975Z1ZP∴P=19。22MPa2-2.Pitzer510K、2。5MPa1480.7cm/mol.解:查附錄二得正丁烷的臨界參數(shù):Tc
=425.2K
=3。800MPa c
=99cm3/molcω=0。193理想氣體方程V=RT/P=?!?1.6961.4807100%14.54%1.4807Pitzer對(duì)比參數(shù):Tr
TTc
510425.21.199 Pr
PPc
2.53.80.6579—普維法∴B00.0830.422
0.083
0.422
0.2326B10.139
T1.6 1.1991.6r0.1720.139 0.172 0.05874T4.2r
1.1994.2BPcB0RTc
1=—0。2326+0。193×0.05874=-0.2213BP BP
=1—0.2213×0.6579/1。199=0。8786Z1
RT1 c rRT Tc r∴P=ZRT→V=ZRT/P=0。8786×8。61.491.4807100%0.63%1.4807
m/mol2—376%(摩爾分?jǐn)?shù))的碳生成二氧化碳,其余的生成一氧化碳。試計(jì)算()含碳量為81.38100kg焦炭能生成1.1013MPa、303K的吹風(fēng)氣若干立方米?(2)所得吹風(fēng)氣的組成和各氣體分壓。解:查附錄二得混合氣中各組分的臨界參數(shù):一氧化碳(1
=132。9K c
=3。496MPa c
=93.1cm3/molω=0049cZ=0.295c
=304.2K
=7376MPa
=94.0c3/molω=0225
=0。274y1
=0.24,y2
c c c c=0.76∴(1)KayT cmiP i
TiciP
0.24132.90.76304.2263.1K0.243.4960.767.3766.445MPacm iT TT
ci303263.11.15
P
0.1011.4450.0157-普維法rm cm rm cm利用真實(shí)氣體混合物的第二維里系數(shù)法進(jìn)行計(jì)算B00.0831
0.4220.083 303132.303132.91.6r1
0.02989B10.1391
0.172T4.2r1
0.139
0.1723039
0.1336RT B c1 B0
B18.314132.90.029890.0490.1336
7.37810611 P c1
1 1 3.496106B00.0832B10.1392
0.422T1.6r20.172T4.22r22
0.0830.139
0.422303304.21.60.1723032
0.34170.03588RT 0
18.314304.2
6B c2 B 22 P 2
2B 7.376106
0.34170.225
119.9310又Tcij
c2TTcicj
0.5
132.9304.20.5201.068KV13V133 333V c1
c2
2
93.55cm3/molcij
Z cij
Z Zc1 c2
0.2950.2742
0.2845
0.2950.225 1cij 2
2 2 0.137Pcij
Zcij
RTcij
/Vcij
0.28458.314201.068/1065.0838MPa∴Trij
TTcij
201.0681.507 Prij
PPcij
0.10135.08380.01990.422 0.422B00.083 0.083 0.13612 T1.6r12
1.5071.6B10.13912
0.1720.139 0.172 0.1083T4.2 1.5074.2r12∴B RT 0 c12 B
B1
8.314201.0680.1360.137
39.8410612 P 12c12
12
5.0838106B y2
2yy
y2Bm 1
1 2
2 220.2427.37810620.240.7639.841060.762119.9310684.27106cm3/mol ∴Z 1
BP PVm
→V=。02486m/molm RT RT∴V=nV=100×1×81.38%/12×0.02486=168.58m3總(2)
PyPZc11 1 ZmZ
0.240.10130.2950.025MPa0.28450.274PyP c2 2 Zm
0.760.10130.28450.074MPa2-4。03MP477K。83mNH3
0.142,若壓縮后溫度448.6K,則其壓力為若干?分別用下述方法計(jì)算:(1)VanderWaals方程;(2)Redlich-Kwang(3)Peng-Robinson(4解:查附錄二得NH的臨界參數(shù):T=405.6K P=11。28MPa
=7。5c3/mol3 c c cω=0。250(1)
求取氣體的摩爾體積對(duì)于狀態(tài)Ⅰ:P=。03MP、T=447、V=。83m3TTTr
477405.61.176 Pr
PPc
2.0311.280.18—普維法∴B00.0830.422T1.6r0.172
0.0830.4221.1761.60.172
0.2426B10.139BP
T4.2r
0.139
1.1764.2
0.05194cB0B10.24260.250.051940.2296RTcBPZ1
PV BP1
P→V=。885×1—m/molrRT RT RT Trc r∴n=2.83/1。885×10—3/mol=1501mol對(duì)于狀態(tài)Ⅱ:摩爾體積V=0.1423/1501mol=。45×10-5/mol T=448。6KVanderWaals27R2Ta c64Pc
278.31426411.28106
0.4253Pam6mol2RTb c8Pc
8.314405.6811.28106
3.737105m3mol1P RT a
8.314
17.65MPaVb V2
9.45870
3.7371052Redlich—Kwanga0.42748
R2TcPc
0.42748
8.314211.28106
8.679Pam6K0.5mol2b0.08664
RTPc0.08664c
8.31411.28106
2.59105m3mol1P RTVb
aTb
8.314448.69.45890
8.679448.60.59.4581059.45890
18.34MPaPeng-Robinson∵TTTr
448.6405.61.106∴k0.37460.2699220.37461.542260.250.269920.2520.7433r T1k1T0.5210.743311.1060.5r
0.9247a
ac
0.45724
R2TcPc
0.45724 0.92470.4262Pam6mol28.3142405.628.3142405.62cb0.07780RTcPc
8.314405.60.07780 2.326105m3mol11.28106∴P RT
aTVb
Vbbb 8.314448.6
0.4262
19.00MPa9.4582.326105 9.4589.4582.32610102.3269.4582.3261010普遍化關(guān)系式∵ V r
V 9.4581057.251051.305<2適用普壓法,迭代進(jìn)行計(jì)算,方法同c1—1(3)2-6.30%(摩爾分?jǐn)?shù))氮?dú)?0%(摩爾分?jǐn)?shù))正丁烷氣體718888MPa
=14cm/molB
=-265c3/mol,B=—9.5c3/mo。12
11 22
y2
2yy
y2Bm 1
1 2
2 221420.30.79.50.72265132.58cm3/molmZ 1Bm
PV→V(摩爾體積)=。24×10—m/molm RT RT假設(shè)氣體混合物總的摩爾數(shù)為n,則0.3n×28+0.7n×58=7→n=0.1429mol∴V=n×V(摩爾體積)=0.1429×4.24×10-4=60.57c32—8。試用R-KSRK273K1013MPa2。0685解:適用EOS的普遍化形式查附錄二得NH的臨界參數(shù):T=126。2K
=3。394MPa ω=0.043 c c(1)R-K方程的普遍化R2T2.5 8.3142126.22.5a0.42748
0.42748 1.5577Pam6K0.5mol23.394106cRT 8.314126.2b0.08664
c0.08664 2.678105m3mol1P 3.394106cA
BbP A a 1.5577
1.551R2T2.5
RT B
bRT1.5 2.6781058.314∴hB
b bP
2.678105101.3106
1.1952 ①Z V ZRT Z8.314273 ZZ 1
A h
1 1.551 h ②1h B1h 1h 1h ①、②兩式聯(lián)立,迭代求解壓縮因子Z(2)SRK方程的普遍化TTTr
273126.22.163m0.4801.5740.17620.4801.5740.040.1760.0420.5427
11m1T0.5
1 10.542712.160.5
0.2563TrR2T2
r 2.163 8.3142126.22.5a0.42748
Pc c
0.42748 0.25630.3992Pam6K0.5mol23.394106RTb0.08664 Pc
8.314126.20.08664 2.678105m3mol3.394106A a 0.3992
0.3975B bRT1.5 2.6781058.314∴hB
b bP
2.678105101.3106
1.1952 ①Z V ZRT Z8.314273 ZZ 1
A h
1 0.3975 h ②1h B1h
1h
1h ①、②兩式聯(lián)立,迭代求解壓縮因子Z第三章3-1.物質(zhì)的體積膨脹系數(shù)和等溫壓縮系數(shù)k的定義分別為:
1VVT
, 。 k1V V PVanderWaals和k的表達(dá)式.
P
T解:Vanderwaals方程P RT aVb V2Z=f(x,y)的性質(zhì)zx
xy
yz
得 P1 V
VT
TP
1 y
z
T
P V又 P
2a RT
P R VT
V3 Vb
TV
Vb所以 2a
RT V Vb
1V
V
Vb2T RPRV3bPTP
RTV32aVb2V 故 1V P k1V
RV2bRTV32aVb2V2Vb2VPT
RTV32aVb23-2.3445MPa93℃,3.45MPa之U、H、、、G、TdS、pdV、QW。U=0、H=0∴ —=pdV2pdV1RTdVRTln2=2109.2J/mol1V V1∴ J/mol又 dSC dT
V
dP
、V RPT TP
T PP ∴ dSR 2∴ SS2dSR2dlnPRlnP2
R
=5。763J/(mol·K)1AUTS=—366×5。763=—2109.26J/(mol·K)GHTSA=—2109。26J/(mol·K)TdSTSA=—2109。26J/(mol·K)pdV
pdV1RTdVRTln2=2109.2J/molV3—3.試求算1kmol氮?dú)庠趬毫?0.13MPa、溫度為773K下的內(nèi)能、焓、熵、CV、Cp和自由焓之值。假設(shè)氮?dú)夥睦硐霘怏w定律。已知:(1)在0。1013MPa時(shí)氮的C與溫度的關(guān)系為C 27.22/molK;p p(2)假定在0℃及0.1013MPa時(shí)氮的焓為零;(3298K0.1013MPa191.76J(mol·K()熵值的計(jì)算dSCp
VdT dpT p
dSCpdTRdp對(duì)于理想氣體: T pdS73 73CdST
dT
113
Rdpp298
298
0.1013SS
73(2220418T)1
dT
113
Rdp0 T p298 0.10130.004187(773298)27.22ln7738.314ln10.13 298 0.101310.354Jmol1K1SS0
10.354191.7610.354181.4(Jmol1K1)(2)焓值的計(jì)算dHCdTpHH0
773273
0.004187T)dT127.22(773273) (77322732)214704.9(Jmol1)HH014704.914704.9(Jmol1)14704.9KJKmol1)其他熱力學(xué)性質(zhì)計(jì)算UHpVHRT14704.98.3147738278.178(KJKmol1)AUTS7278.178773181.4132944.022(KJKmol1)GHTS14704.9773181.4125517.3(KJKmol1)C 773mol1K)pC CV
R30.458.31422.14(KJKmol1)3-4.27℃、0.1MPa227℃、10MPa熵值。已知氯在理想氣體狀態(tài)下的定壓摩爾熱容為Cig31.69610.144103T4.038106T2J/molKp解:分析熱力學(xué)過(guò)程300K0.1MPa真實(shí)氣體H=0,S=0-HR1
H
500K10MPa真實(shí)氣體H2-SR13000.1MPa
H、S
S250010MPa理想氣體
1 1理想氣體查附錄二得氯的臨界參數(shù)為:T=417K、P=7。701MPa、ω=0.073c c∴(1)300K、0.1MPa的真實(shí)氣體轉(zhuǎn)換為理想氣體的剩余焓和剩余熵T=Tr
/T=300/417=0。719 1 c
=P/r 1
=0。1/7。701=0。013—利c用普維法計(jì)算B00.083
0.422 dB0 0.6324 0.675T B10.139
T1.6r0.172T4.2r
0.5485
dTrdTr
r0.722T5.24.014rHR PB0
dB0
B1
dB1
SRPdB0
dB1又RT r
rdT
rdT
R rdT dTc r r r r代入數(shù)據(jù)計(jì)算得1
=-91。、SR=—0。20371(2)300K、0.1MPa500K、10MPaTH 2CigdTT
500
31.69610.144103T4.038106T2dT1 T 1
300=7。02kJ/molS
Cigp
dTRlnP
50031.696T10.1441034.038106TdTRln1021 T T P21
300
0.1=—20。39J/(mol·K)500K、10MPaT=T/T=500/417=1。199
=P/
=10/7.701=1.299—利用普維法計(jì)r 2 c算
r 2 cB00.083
0.422dB00.2326 0.675T2.60.4211dB0Tr
dT rrB10.139
0.172dB10.05874 0.722T5.20.281dB1HR
T4.2rdB0
dB1
dT rrSRPdB0
dB1PB0T B1T 又RT r rdT
rdT
R rdT dTc r r r r代入數(shù)據(jù)計(jì)算得HR=-3.41KJ/mo、SR=-4。768J(mo·)2 2∴H=H—H=H=-HR+H+HR=91.41+7020—3410=3.701KJ/mol2 1 2 1 2S=S-SSSRS1SR=0.2037-20.39-4.768=-24。952 1 2 1 23—5.試用普遍化方法計(jì)算二氧化碳在473。2K、30MPa下的焓與熵.已知在相同條件下,二氧化碳處于理想狀態(tài)的焓為8377J/mol,熵為-25.86J/(mol·K)。解:查附錄二得二氧化碳的臨界參數(shù)為:T
=304.2K、P
=7。376MPa、ω=0。225∴ T=T/r
c=473。2/304.2=1。556 c
c=P/Pr
=30/7.376=4.067-利用普c壓法計(jì)算查表,由線性內(nèi)插法計(jì)算得出:H 0HRTc
1.741
1HH
0.04662
0SRSR
0.8517
SRR
0.296HR
0 1HR HR SR SR SRRR∴由RT RTRRc c
RT 、c
計(jì)算得:KJ/mol 。635(∴H=HR+Hig=-4。377+8。377=4KJ/molS=SR+Sig=-7.635-25.86=—33。5J/(mol·K)3—621℃時(shí),1molUVHS乙炔在01013MPa0℃的理想氣體狀態(tài)的HS84℃,21℃4。459MPa.3-7.10kg373.15K、0.1013MPaU、H、、和G之值。解法一:查表U,kJ/kg;H,kJ/kg;S,kJ/kg/K飽和液體U飽和蒸汽飽和液體飽和蒸汽飽和液體飽和液體U飽和蒸汽飽和液體飽和蒸汽飽和液體飽和蒸fUHHSSg f g f g418.942506.5419.042676.11。30697。354g f△H=m(HH)=26570。6kJg f△S=m(SS)=60。48kJ/kg f解法二思路:查出水的汽化潛熱H,根據(jù)熱力學(xué)基本關(guān)系式依次求出△H,△S,△A,△U,△G熱力學(xué)基本關(guān)系式:dH=TdS+VdpdA=-SdT-pdVdU=TdS-pdVdG=-SdT+Vdp
fgT,p不變,V變dH=TdS+Vdp=TdSdA=-SdT-pdV=-pdVdU=TdS-pdV(完整)化工熱力學(xué)答案(第三版)=·m1 f=1.0435×10-3×10=0.010435m3終態(tài)水為蒸汽,V2
=V·mg=1673.0×10-3×10=16.730m3△V=V-V2 1將△V代入△U=T△S-P△V,得3 6△U=373.15×60.485×10-0.10113×10×16.720=20879084J≈20879kJ3—80。1013MPa、801.013MPa、180℃的飽和蒸汽時(shí)該過(guò)程的VH和3733J/mol;957c3/mol;Cigp
16.036/molK
1 1 。B=-78T103 cm3/mol 解:1.查苯的物性參數(shù):T=562.1K、P=4。894MPa、ω=0。271c c求ΔV由兩項(xiàng)維里方程
(完整)化工熱力學(xué)答案(第三版)PV BP P
2.4Z 2 RT
1
1
78T103 1.013106
1 2.41
78
103 0.85978.314106453ZRT 0.85978.314453
453
V 2 P
1.013
3196.16cm3molVVV1 2VVV2 1
3196.1695.73100.5cm3mol HHV
R)HidPHidT
HR2SSV
(S1
R)SidPSidT
SR2計(jì)算每一過(guò)程焓變和熵變(1)飽和液體(T、P)→飽和蒸汽ΔH=30733KJ/KmolV(完整)化工熱力學(xué)答案(第三版)(完整)化工熱力學(xué)答案(第三版)ΔS=ΔH/T=30733/353=87。1KJ/Kmol·KV V(2)飽和蒸汽(353K、0。1013MPa)→理想氣體∵TT r TC
353562.1
P0.628 P r PC
0.10130.02074.894點(diǎn)(TP2—8r r由式(—6、(3-6)計(jì)算HR dB0 B0 dB1 B1rr1 -Prr
RT c
rdT T
dT Tr r-0.02070.6282.26261.28240.2718.11241.7112=-0.0807∴HR0.08078.314562.1∴1-377.13KJ KmolSR dB0 dB11
R rdT dT-0.02072.26260.2718.1124 -0.02072.26260.2718.1124-0.09234∴SR-0.092348.314∴10.7677KJKmolK(3)理想氣體(353K、0。1013MPa)→理想氣體(453K、1.013MPa)Hid
2CiddTTP T PT145316.0360.23TdT 16.0363530.235745323532211102.31KJ KmolSid
CidPTPPT
dTRln 2353
T T P16.03616.0360.2357 8.314ln1.013dTT0.101316.036ln4530.23573533538.47KJKmolK(4)理想氣體(453K、1。013MPa)→真實(shí)氣體(453K、1。013MPa)T 453r 562.1
P1.0130.2070r 4.894點(diǎn)(TP)2-8r r由式(3-61(3-62)計(jì)算rrHR-TPrr
dB0
B0
dB1
B1RT c
rdT T
dT Tr r-0.8060.20700.51290.2712.2161-0.3961SR-P
dB0
dB1R r dT dTr r-0.20700.2712.2161-0.3691∴HR1850.73KJ Kmol SR3.0687KJ KmolK2 24.求HHV
(H1
R)HidPHidT
H
40367KJ KmolV
(S1
R)SidPSidSRT 293.269KJ KmolKH /kg H H /kg H /kgl gV1.1273cm3/g V 194.4cm3/gl gxV xV g lx194.4x1.1273解之得:x0.577%HHxH xH0.005772778.10.00577672.81774.44kJ/kggl3-11260℃1.0336MPa0.2067MPa衡,試問(wèn)蒸汽在噴嘴出口的狀態(tài)如何?解:查1.03MPa過(guò)熱水蒸汽表TS6.8817kJkg1K1TS7.0463kJkg1K1TS1
6.9641kJkg1K10S2
S kg1K1p0.2067MPa時(shí):S 1.5301kJkg1K1,Hl
504.7kJkg1S kgK,Hg
2706.7kJkg1比較S和S、S可知,出口處體系處于氣液平衡狀態(tài)。2 l gxS2
(1x)Sl
S S代入已知,解得干度為:x Sg
Sl0.971lHxHg
(1x)Hl
2642.8(kJkg)3-12.試求算366K、2。026MPa下1mol乙烷的體積、焓、熵與內(nèi)能。設(shè)255K、0.1013MPa時(shí)乙烷的焓、熵為零。已知乙烷在理想氣體狀態(tài)下的摩爾恒壓熱容Cigp
10.038239.304103T73.358106T2J/molK:初態(tài)的溫度T 273.1518255.15K,末態(tài)溫度為:T
273.1593366.15K1 2計(jì)算從初態(tài)到末態(tài)的熱力學(xué)性質(zhì)變化,計(jì)算路徑為:255.15K,0.1013MPaH1SR1理想氣體
H,S 366.15K,2.026MPaHR2SR2理想氣體55.15K,0.1013MPa
366.15K,2.026MPaig,ig)計(jì)算剩余性質(zhì)烷的臨界參數(shù)為:T=305.32K,p=4.872MPa,=0。099c c態(tài)壓力為常壓,HR0, SR01 1366.15 2.026態(tài):T 1.1992,p 0.4158r2 305.32 r2 4.872據(jù)圖2—11,應(yīng)該使用普遍化的第二維里系數(shù)計(jì)算。0.422 0.422 0.172 0.172)0.083 0.083 0.2326 B0.139 0.139 0.058T1.6r
1.1992
1.6
T4.2r
1.1992
4.2(0) 0.675
0.675
0.4209T2.6r r
199260.722
0.722
0.2807T5.2r r
19922式(3-78)得:HR B(0) dB(0) BdBp RT r Tr
dT Tr r
rdT r0.41580.21260.42090.0990.05880.28070.2652
1.1992
1.1992 HR0.26528.314366.15807.30Jmol-1式(3-79)得:SRp
dB(0)
dB(1)
0.4158(0.42090.0990.2807)0.1866R r
dT dT r rSR0.18668.3141.5511Jmol-1K-1)計(jì)算理想氣體的焓變和熵變ig
2CigdTT3615 T3615 3 6 1 10.83239.30410 T73.35810 d255.15
239.304103
73.358106 10.83T T T2T2 T3T32 1 2 2 1 3 2 18576.77Jmol-1igSS
Rln 1
Cig2366.15 pdT2p T p p
255.15T0.1013
8.314
2.026
3661510.083239.304103T73358106T2255.15 T2.7386Jmol-1K-1)計(jì)算末態(tài)的體積式(2-30)和(2-31)得:Bp
p
0.41581RT
1
B(0)B(1)
Trr
10.23260.0990.058801.1992
0.9214ZRT 0.92148.314366.15 2 1.384103m3mol1p 2.0261062此:H HH HRHigHR1 1 1 2 008576.77 7769.47Jmol1S SS SRSigSR1 1 1 2 002.7686 1.2175Jmol1K1U H p
7769.472.0261061.3841032 2 2
jie4965.5Jmol13-13.試采用RK方程求算在227℃、5MPa下氣相正丁烷的剩余焓和剩余熵。解:查附錄得正丁烷的臨界參數(shù):T=425.2K、
=3。800MPa、ω=0。193c c又R—K方程:P RT aVb T0.VVb∴ a
R2TcPc
0.42748
8.3142425.22.53.8106
29.04Pam6K0.5mol2cb0.08664RTcPc
8.314425.20.08664 8.06105m3mol13.8106∴51068.314500.15V8.06105
500.150.5V
29.04V8.06105試差求得:=5。61×10—3/mol∴ h
b8.061050.1438V 56.1105A a 29.04
3.874B bRT1.5 8.061058.314∴Z
A h
1 3.874 0.1438 0.6811h B1h
1
10.1438∴HR
Z1
1.5a
ln1
bZ11.5Alnh1.0997RT bRT1.5 V BHR1.09978.314500.154573J/molSR Pbln
a ln1
b0.809 R RT 2bRT1.5 V SR0.8098.3146.726J/K3—14.RK50℃、10.13MPa度。解:查附錄得二氧化碳的臨界參數(shù):Tc
=304。2。2K、P
=7。376MPac∴ R2T2.5 8.3142304.22.5a0.42748
0.42748 6.4661Pam6K0.5mol27.376106cRT 8.314304.2b0.08664
c0.08664 29.71106m3mol1P 7.376106c又P RT aVb Tb∴10.131068.314323.15V29.71106
323.150.5V
6.4661V29.71106迭代求得:=294.9cm/mol∴hb29.710.1007V 294.9A a 6.466
4.506B bRT1.5 29.711068.314∴Z
A h
1 4.506 0.1007 0.69971h
h
1
10.1007B1 ∴l(xiāng)nf
PbZ1ln
a ln1
b0.7326P RT bRT∴f=4。869MPa
V3-15.3℃下,壓力分別為(飽和蒸汽壓(b)100×1Pa(30℃=5100×10Pa范圍內(nèi)將液態(tài)水的摩爾體積視為常數(shù),其值為0.01809m3/kmol;(3)1×1Pa(a)30℃,=0.0424×15PafLi
fVfi i1×15Pa=0。0424×105P<1×105Pa∴30℃、。0424×15Paf=Pi∴fSPS0.0424105Pai iSfi
S PS1i(b)30℃,10×10Pa∵f
PSSexpP
V dP S
S PSLii i Li
PSRTi
i i ifL VL V
PPS
0.018091031000.0424105ln
P i dP i
i 0.07174fSi∴f
PSRTi
RT 8.314303.15i 1.074fSifL1.074fi
S1.0740.04241054.554103Pa3—16.AB05MPaA981kg/sB473的過(guò)熱蒸汽,試求B股過(guò)熱蒸汽的流量該為多少?解:A股:查按壓力排列的飽和水蒸汽表,0.5MPa(151。9℃)時(shí),HH640.23kJ/kglH 2748.7kJ/kggH H 0.982748.70.02640.232706.53kJ/kgAH H 2855.4kJ/kgBHHQp忽略混合過(guò)程中的散熱損失,絕熱混合后焓值不變
H=所以 混合前Bxkg/s12706.532706.5312855.4xx解得:x2748.72706.530.3952kg/s2855.42748.7該混合過(guò)程為不可逆絕熱混合,所以S0只有可逆絕熱過(guò)程,S0因?yàn)槭堑葔哼^(guò)程,該題也不應(yīng)該用U0第四章
混合前后的熵值不相等.進(jìn)行計(jì)算。4-120℃0.1013MPaH2
O(2)所形成的溶液其體積可用下式
58.3632.46
42.98x2
58.77x323.45x4VV表示為濃度x2
2 2 2 2 1 2的函數(shù)。解:由二元溶液的偏摩爾性質(zhì)與摩爾性質(zhì)間的關(guān)系:M M
M
M M
M1 2x2
T
2 2 x2
T,P得: V
V
V
VV
V1又 V
2x2
T,P
2 2 x2
T,Px
32.4685.96x
176.31x293.8x32 T,P
2 2 2所以V58.3632.46x42.98x258.77x323.45x4x
32.4685.96x176.3x293.8x31 2 2
2 2 2
2 2 258.3642.98x2117.54x370.35x4J/mol2 2 2V58.3632.46x42.98x258.77x323.45x41x32.4685.96x176.31x293.8x32 2 2 2 2 2 2 2 225.985.96
219.29x2211.34x370.35x4J/mol2 2 2 24-2.T及PH400x1
600x2
xx12
40x1
20x2
H。試確定在該溫度、壓力狀態(tài)下(1)用x1
表示的H和H1
;(2)純組分焓H1
H無(wú)限稀釋下液體2的偏摩爾焓H和H的數(shù)值。1 2解:(1)已知H400x1
600x2
xx12
40x1
20x2
(A)x=1-x帶入(A),并化簡(jiǎn)2 1H400x6001xx1x40x201x600180x20x3
(B)1 1 1 1 1 1 1 1由二元溶液的偏摩爾性質(zhì)與摩爾性質(zhì)間的關(guān)系:M M
M
M M
M1 1 x1
T
2 1 x1
T,P得:
H
H
, H H
H1由式(BH
1x1
T,P
2 1x1
T,Px
18060x211 T,P所以
600180x20x31x18060x2 42060x240x3J/mol (C)1 1 1 1 1 1 1H 600180x20x3x18060x260040x3J/mol (D)2 1 1 1 1 1(2x=1x=0(B)HH1 1H 400J/mol H1
1 2600J/mol(3H和H是指在x=0x=1H和
x=0(CH420J/mol,1 2 1
1 2 1 1x=1D)H640J/mol。1 24—1200c330%的甲醇)7H2
O(2)(摩爾比)組成。試求需要多少體積的25℃的甲醇與水混合。已知甲醇和水在25℃、摩爾分?jǐn)?shù)1
38.632cm3/mol2
/mol25℃下純物質(zhì)的體積:V1
40.727cm3/mol,V2
18.068cm3/mol。解:由M M得:VxVxVi i 11 2 2代入數(shù)值得:V=0。3×38。632+0。7×17。765=24。03cm3/moln120024.03
49.95moln1
0.349.9514.985moln 0.749.9534.965mol2則所需甲醇、水的體積為:V1t
14.98540.727610.29molV 34.96518.068631.75mol2t將兩種組分的體積簡(jiǎn)單加和:V V1t 2t
610.29631.751242.04mol1242.0412003.503%12004-4。有人提出用下列方程組表示恒溫、恒壓下簡(jiǎn)單二元體系的偏摩爾體積:VVaaxbx2 VV aax bx21 1 1 1 2 2 2 2式中,V1
和V是純組分的摩爾體積,a、b只是T、P的函數(shù).試從熱力學(xué)角度分析這2些方程是否合理?解:根據(jù)Gibbs-Duhem方程 dMi i
T
0得恒溫、恒壓下 xdV1 1或 dV
xdV 02 222dV dV22x 11dx
x2
dx2x dx由題給方程得
1 1 2dV
(A)x 11dx
b
x2bx21 112x dV22dx2
ax2
2bx22
(B)(A(方程,故不合理。4—5.試計(jì)算甲乙酮(1)和甲苯(2)323K2。、1解,解,B1,B, 數(shù)據(jù)同例4。ij 12ln? Py220501RT112 128314323(13870.521.054? 3481ln? Py220502RT221 128314323(18600.521.415? 243ln2xln? 5ln348.5ln243527870732350.2908iif0.290820510459.61104Pa24-6.vanderwaals方程的氣體的逸度表達(dá)式。
vl為氣液兩相平衡的一個(gè)基本限制,試問(wèn)平衡時(shí)下式是否成立?i ifvfvNylniiyiNylnvNi iylnyi ii1i1i1lnflNxlniixNxlnlNi ixlnxi i根據(jù)平衡常數(shù)Ky/x即y Kx和lnvln則i1ii1i1iiiilnfvNylnvNi(Kx)lni iylnyiNiiiKN xln?lNi1iKxlnKxi ii1i1iiNi1xlnxi ii1K(lnfi1N xlnK)ii1lNxlnK)ii1若K則lnfllnfv;即flfvK即x=y(tǒng)共沸點(diǎn)時(shí),才有flfvi i133701272026MPa。求容器內(nèi)混合物的摩爾數(shù)、焓和熵。假設(shè)混合物為12720。26MPaV、HS表中焓值和熵值的基準(zhǔn)是在絕對(duì)零度時(shí)完整晶體的值為零.V(cmo)mo-)mol-)氮 6 18090 0乙烷
31390
190。2i MxMi 理想溶液中各組份的偏摩爾性質(zhì)與他們純物質(zhì)之間的關(guān)系為:V V H H S S Rlnxi i i i i i i混合物的摩爾體積:VxVxVi i i
0.3179.6mol1tV 110n 7504.1molt混合物的摩爾數(shù): V 133.26混合物的摩爾焓:HxH xH 0.31809031390mol1i i i iHtnH7504.1327400205613162J混合物的摩爾熵的計(jì)算N的偏摩爾熵:2S SN N2
RlnxN2
1548.314ln164.0Jmol1KCH28S S RlnxCH CH CH28 28 2
8.314ln193.17Jmol1K混合物的摩爾熵:SiSi3164719171842Jmol1K1混合物的熵:S nS7504.13184.421383911.65Jt4—9.344。75K時(shí),由氫和丙烷組成的二元?dú)怏w混合物,其中丙烷的摩爾分?jǐn)?shù)為0。792,混合物的壓力為3.7974MPa。試用RK方程和相應(yīng)的混合規(guī)則計(jì)算混合物中氫
=0.07,ij
的實(shí)驗(yàn)值為1。439.H2解:已知混合氣體的T=344.75K P=3.7974MPa,查附錄二得兩組分的臨界參數(shù)氫(1):y1
=0.208 Tc
=332K Pc
=1297MPa Vc
=65.0c3/mol ω=-22丙烷2y=792 T=3698K P=4.246MPa V=203c3/mol ω=01521 c c c∴ R2T2.5 8.314233.22.5a 11
c1 0.42748 0.1447Pam6K0.5mol2P 1.297106c1R2T2.5 8.3142369.82.5a 22
c2 0.42748 18.30Pam6K0.5mol2P 4.246106∵a aij i
c20.51kij∴a a12 1
0.51k12
0.144718.300.510.071.51Pam6K0.5mol2y2am 1
2yya1 2
y2a2 220.20820.144720.2080.7921.5130.792218.3011.98Pam6K0.5mol2cb0.08664RT1c1 Pc1
8.31433.20.08664 1.844105m3mol11.297106cb 0.08664RTc2 Pc2
8.314369.80.08664 6.274105m3mol14.246106 ybm ii
0.2081.8441050.7926.2741055.3526105m3mol1A
11.98 4.206B bRTm
5.35261058.314344.751.5B bP 5.35261053.7974106 0.07091 ①h m Z ZRT Z8.314344.75 ZZ 1
A h
1 4.206 h ②1h B1h
1
1h 聯(lián)立①、②兩式,迭代求解得:Z=0。7375 h=0.09615所以,混合氣體的摩爾體積為:ZRT 0.73758.314344.75V 5.567104m3mol1P 3.7974106∴?
V
2y
y
V
a
V
PVln
ln
1
111
212
ln
m
m1 ln
m
m ln 1 Vb Vb
bRT
V b2RT1.5 V V
RTm m? V b 2y
mya
m mVb ab Vb b PVlnln 2
121 222ln m m2 ln m m ln 2 Vb Vb bRT1.5 V b2RT1.5 V V
RTm m m m m分別代入數(shù)據(jù)計(jì)算得:4—10.某二元液體混合物在固定T和P下其超額焓可用下列方程來(lái)表示:HE=xx12(40x+20x)J/mol。試求HE和HE(
表示).1 2 1 2 11.4-11333K10Pa(1(2Vcm3/mol)如下表所示.X V X VX V1110.00101.4600。20104。0020。85111。8970。02101。7170.30105.2530.90112。4810。04101。9730.40106.4900.92112.7140。06102。2280。50107.7150。94112.9460.08102。4830。60108.9260。96113。1780.10102.7370。70110。1250。98113。4090.15103.3710.80111.3101.00113。640試計(jì)算:(1)純物質(zhì)摩爾體積V1
V2(2)x=0.2、0.50.8V和V;2 1 2(3)x2
=0.2、0.50.8;(4)無(wú)限稀釋混合物中偏摩爾體積V和V的數(shù)值1 2()V=113.64(cm3/mol)和V=101.46(cm3/mol);1 2V V 1
Vx2x2
Vx2x1
Vx2x12當(dāng)x 時(shí);2VVx11111.3100.2
111.310110.125
111.897
}/2(113.669cm3/mol
0.80.7 0.850.8V (VxV)/x2 1 1 2(111.3100.8113.669)/0.2101.87cm3/mol同理:x=0。5V2
113.805cm
/mol和V2
101.65cm
/mol1x=0.8V114.054cm12
/mol和V 101.489cm2
/molVV(xVxV)1 1 2 2當(dāng)x 時(shí);2VV(xVxV)1 1 2 2111.310(0.8113.640.2101.46)0.106cm3/mol同理:當(dāng)x2
0.5;V0.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年職場(chǎng)心理學(xué)知識(shí)要點(diǎn)掌握測(cè)試題
- 2026年電影藝術(shù)與電影市場(chǎng)分析題集
- 2026年英語(yǔ)能力水平測(cè)試題目集
- 2026年AI在口譯中的應(yīng)用及跨文化交際能力測(cè)試題
- 2026年法律咨詢行業(yè)服務(wù)質(zhì)量評(píng)估試題
- 2025年歷史建筑修繕施工安全專項(xiàng)方案論證協(xié)議
- 水電站工藝流程優(yōu)化方案
- 砂石礦山開(kāi)采環(huán)保方案
- 雨污分流管網(wǎng)建設(shè)方案
- 天然氣利用與環(huán)保技術(shù)方案
- 數(shù)字孿生方案
- 【低空經(jīng)濟(jì)】無(wú)人機(jī)AI巡檢系統(tǒng)設(shè)計(jì)方案
- 金融領(lǐng)域人工智能算法應(yīng)用倫理與安全評(píng)規(guī)范
- 機(jī)動(dòng)車駕校安全培訓(xùn)課件
- 2025年役前訓(xùn)練考試題庫(kù)及答案
- 2024VADOD臨床實(shí)踐指南:耳鳴的管理課件
- 2025年湖南省公務(wù)員錄用考試錄用考試《申論》標(biāo)準(zhǔn)試卷及答案
- 行政崗位面試問(wèn)題庫(kù)及應(yīng)對(duì)策略
- 2025年中信金融業(yè)務(wù)面試題庫(kù)及答案
- 2025廣東潮州府城文化旅游投資集團(tuán)有限公司下屬企業(yè)副總經(jīng)理崗位招聘1人筆試歷年備考題庫(kù)附帶答案詳解2套試卷
- 2025年公務(wù)員多省聯(lián)考《申論》題(陜西A卷)及參考答案
評(píng)論
0/150
提交評(píng)論