版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年高一上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知點位于第二象限,那么角所在的象限是A.第一象限 B.第二象限C.第三象限 D.第四象限2.函數(shù)的零點所在區(qū)間是()A B.C. D.3.已知函數(shù),若不等式對任意實數(shù)x恒成立,則a的取值范圍為()A. B.C. D.4.已知向量,滿足,,且與的夾角為,則()A. B.C. D.5.已知集合則角α的終邊落在陰影處(包括邊界)的區(qū)域是()A. B.C. D.6.函數(shù)的值域為()A. B.C. D.7.正割及余割這兩個概念是由伊朗數(shù)學家阿布爾威發(fā)首先引入的.定義正割,余割.已知為正實數(shù),且對任意的實數(shù)均成立,則的最小值為()A. B.C. D.8.下列函數(shù)中為奇函數(shù),且在定義域上是增函數(shù)是()A. B.C. D.9.已知,若,則m的值為()A.1 B.C.2 D.410.下列函數(shù)中,既不是奇函數(shù)也不是偶函數(shù)的是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若函數(shù),則______12.對于定義在區(qū)間上的兩個函數(shù)和,如果對任意的,均有不等式成立,則稱函數(shù)與在上是“友好”的,否則稱為“不友好”的(1)若,,則與在區(qū)間上是否“友好”;(2)現(xiàn)在有兩個函數(shù)與,給定區(qū)間①若與在區(qū)間上都有意義,求的取值范圍;②討論函數(shù)與與在區(qū)間上是否“友好”13.已知一個扇形的面積為,半徑為,則它的圓心角為______弧度14.某班有學生45人,參加了數(shù)學小組的學生有31人,參加了英語小組的學生有26人.已知該班每個學生都至少參加了這兩個小組中的一個小組,則該班學生中既參加了數(shù)學小組,又參加了英語小組的學生有___________人.15.已知扇形的周長為8,則扇形的面積的最大值為_________,此時扇形的圓心角的弧度數(shù)為________16.已知函數(shù),,其中表示不超過x的最大整數(shù).例如:,,.①______;②若對任意都成立,則實數(shù)m的取值范圍是______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知關(guān)于的函數(shù).(1)若,求在上的值域;(2)存在唯一的實數(shù),使得函數(shù)關(guān)于點對稱,求的取值范圍.18.已知圓M與x軸相切于點(a,0),與y軸相切于點(0,a),且圓心M在直線上.過點P(2,1)直線與圓M交于兩點,點C是圓M上的動點.(1)求圓M的方程;(2)若直線AB的斜率不存在,求△ABC面積的最大值;(3)是否存在弦AB被點P平分?若存在,求出直線AB的方程;若不存在,說明理由.19.已知函數(shù).求:(1)函數(shù)的單調(diào)遞減區(qū)間,對稱軸,對稱中心;(2)當時,函數(shù)的值域20.已知向量,.(1)求的值;(2)若向量滿足,,求向量的坐標.21.已知函數(shù)(1)證明:函數(shù)在區(qū)間上單調(diào)遞增;(2)已知,試比較三個數(shù)a,b,c的大小,并說明理由
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】通過點所在象限,判斷三角函數(shù)的符號,推出角所在的象限.【詳解】點位于第二象限,可得,,可得,,角所在的象限是第三象限故選C.【點睛】本題考查三角函數(shù)的符號的判斷,是基礎題.第一象限所有三角函數(shù)值均為正,第二象限正弦為正,其它為負,第三象限正切為正,其它為負,第四象限余弦為正,其它為負.2、C【解析】利用零點存在定理可得出結(jié)論.【詳解】函數(shù)在上單調(diào)遞增,因為,,,,所以,函數(shù)的零點所在區(qū)間是.故選:C.3、C【解析】先分析出的奇偶性,再得出的單調(diào)性,由單調(diào)性結(jié)合奇偶性解不等式得到,再利用均值不等式可得答案.【詳解】的定義域滿足,由,所以在上恒成立.所以的定義域為則所以,即為奇函數(shù).設,由上可知為奇函數(shù).當時,,均為增函數(shù),則在上為增函數(shù).所以在上為增函數(shù).又為奇函數(shù),則在上為增函數(shù),且所以在上為增函數(shù).所以在上為增函數(shù).由,即所以對任意實數(shù)x恒成立即,由當且僅當,即時得到等號.所以故選:C4、A【解析】根據(jù)向量的數(shù)量積運算以及運算法則,直接計算,即可得出結(jié)果.【詳解】因為,,且與的夾角為,所以,因此.故選:A.5、B【解析】令,由此判斷出正確選項.【詳解】令,則,故B選項符合.故選:B【點睛】本小題主要考查用圖像表示角的范圍,考查終邊相同的角的概念,屬于基礎題.6、C【解析】由二倍角公式化簡,設,利用復合函數(shù)求值域.【詳解】函數(shù),設,,則,由二次函數(shù)的圖像及性質(zhì)可知,所以的值域為,故選:C.7、D【解析】由參變量分離法可得出,利用基本不等式可求得取值范圍,即可得解.【詳解】由已知可得,可得,因為,則,因為,當且僅當時,等號成立,故.故選:D.8、D【解析】結(jié)合基本初等函數(shù)的單調(diào)性及奇偶性分別檢驗各選項即可判斷【詳解】對于函數(shù),定義域為,且,所以函數(shù)為偶函數(shù),不符合題意;對于在定義域上不單調(diào),不符合題意;對于在定義域上不單調(diào),不符合題意;對于,由冪函數(shù)的性質(zhì)可知,函數(shù)在定義域上為單調(diào)遞增的奇函數(shù),符合題意故選:D9、B【解析】依題意可得,列方程解出【詳解】解:,,故選:10、D【解析】根據(jù)函數(shù)奇偶性的概念,逐項判斷即可.【詳解】A中,由得,又,所以是偶函數(shù);B中,定義域為R,又,所以是偶函數(shù);C中,定義域為,又,所以是奇函數(shù);D中,定義域為R,且,所以非奇非偶.故選D【點睛】本題主要考查函數(shù)的奇偶性,熟記概念即可,屬于基礎題型.二、填空題:本大題共6小題,每小題5分,共30分。11、##0.5【解析】首先計算,從而得到,即可得到答案.【詳解】因為,所以.故答案為:12、(1)是;(2)①;②見解析【解析】(1)按照定義,只需判斷在區(qū)間上是否恒成立;(2)①由題意解不等式組即可;②假設存在實數(shù),使得與與在區(qū)間上是“友好”的,即,即,只需求出函數(shù)在區(qū)間上的最值,解不等式組即可.【詳解】(1)由已知,,因為時,,所以恒成立,故與在區(qū)間上是“友好”的.(2)①與在區(qū)間上都有意義,則必須滿足,解得,又且,所以的取值范圍為.②假設存在實數(shù),使得與與在區(qū)間上是“友好”的,則,即,因為,則,,所以在的右側(cè),又復合函數(shù)的單調(diào)性可得在區(qū)間上為減函數(shù),從而,,所以,解得,所以當時,與與在區(qū)間上是“友好”的;當時,與與在區(qū)間上是“不友好”的.【點睛】本題考查函數(shù)的新定義問題,主要涉及到不等式恒成立的問題,考查學生轉(zhuǎn)化與化歸的思想、數(shù)學運算求解能力,是一道有一定難度的題.13、##【解析】利用扇形的面積公式列方程即可求解.【詳解】設扇形的圓心角為,扇形的面積即,解得,所以扇形的圓心角為弧度,故答案為:.14、12【解析】設該班學生中既參加了數(shù)學小組,又參加了英語小組的學生有人,列方程求解即可.【詳解】設該班學生中既參加了數(shù)學小組,又參加了英語小組的學生有人,則.故答案為:12.15、①.4②.2【解析】根據(jù)扇形的面積公式,結(jié)合配方法和弧長公式進行求解即可.【詳解】設扇形所在圓周的半徑為r,弧長為l,有,,此時,,故答案為:;16、①.②.【解析】①代入,由函數(shù)的定義計算可得答案;②分別計算時,時,時,時,時,時,時,的值,建立不等式,求解即可【詳解】解:①∵,∴②當時,;當時,;當時,;當時,;當時,;當時,;當時,又對任意都成立,即恒成立,∴,∴,∴實數(shù)m的取值范圍是故答案為:;.【點睛】關(guān)鍵點睛:本題考查函數(shù)的新定義,關(guān)鍵在于理解函數(shù)的定義,分段求值,建立不等式求解.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由,得到,結(jié)合三角函數(shù)的性質(zhì),即可求解;(2)因為,可得,結(jié)合題意列出不等式,即可求解.【小問1詳解】解:當,可得函數(shù),因為,可得,則,所以在上值域為.【小問2詳解】解:因為,可得,因為存在唯一的實數(shù),使得曲線關(guān)于點對稱,所以,解得,所以的取值范圍即.18、(1)(2)(3)存在,方程為【解析】(1)根據(jù)圓與坐標軸相切表示出圓心坐標,結(jié)合已知可解;(2)注意到當點C到直線AB距離最大值為圓心到直線距離加半徑,然后可解;(3)根據(jù)圓心與弦的中點的連線垂直弦,或利用點差法可得.【小問1詳解】∵圓M與x軸相切于點(a,0),與y軸相切于點(0,a),∴圓M的圓心為M(a,a),半徑.又圓心M在直線上,∴,解得.∴圓M的方程為:.【小問2詳解】當直線AB的斜率不存在時,直線AB的方程為,∴由,解得.∴.易知圓心M到直線AB的距離,∴點C到直線AB的最大距離為.∴△ABC面積的最大值為.【小問3詳解】方法一:假設存在弦AB被點P平分,即P為AB的中點.又∵,∴.又∵直線MP的斜率為,∴直線AB的斜率為-.∴.∴存在直線AB的方程為時,弦AB被點P平分.方法二:由(2)易知當直線AB的斜率不存在時,,∴此時點P不平分AB.當直線AB的斜率存在時,,假設點P平分弦AB.∵點A、B是圓M上的點,設,.∴由點差法得.由點P是弦AB的中點,可得,∴.∴∴存在直線AB的方程為時,弦AB被點P平分.19、(1)單調(diào)遞減區(qū)間為;對稱軸為,;對稱中心為,;(2)【解析】(1)首先化簡函數(shù)解析式得到,然后結(jié)合函數(shù)的圖象與性質(zhì)即可求出單調(diào)遞減區(qū)間,對稱軸和對稱中心;(2)由求得,即可求出值域.【詳解】(1)化簡可得,由,,可得,,∴函數(shù)的單調(diào)遞減區(qū)間為,令,可得,故函數(shù)的對稱軸為,;令,得,故函數(shù)的對稱中心為,(2)當時,,∴,∴,∴函數(shù)的值域為20、(1)7;(2).【解析】(1)先計算,再求模即可;(2)設,進而
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 吉林省延邊州2025-2026學年高一(上)期末物理試卷(含答案)
- 河南省漯河市臨潁縣晨中學校2025-2026學年上學期10月月考八年級數(shù)學試卷(含答案)
- 期中測試卷(含答案含聽力原文無音頻)2025-2026學年人教版英語八年級下冊
- 無常題目及答案
- 望岳的題目及答案
- 新人教版九年級地理上冊期末試卷(及答案)
- 天津博邁科海洋工程有限公司臨港海洋重工建造基地一期工程環(huán)境影響補充報告簡本
- 電氣物聯(lián)網(wǎng)技術(shù)要點
- 雅安滎經(jīng)220kV變電站110kV間隔擴建工程建設項目環(huán)境影響報告表
- 數(shù)字攝影考試試題及答案
- 2026中國國際航空招聘面試題及答案
- (2025年)工會考試附有答案
- 2026年國家電投集團貴州金元股份有限公司招聘備考題庫完整參考答案詳解
- 復工復產(chǎn)安全知識試題及答案
- 中燃魯西經(jīng)管集團招聘筆試題庫2026
- 資產(chǎn)接收協(xié)議書模板
- 數(shù)據(jù)中心合作運營方案
- 印鐵涂料基礎知識
- 工資欠款還款協(xié)議書
- 石籠網(wǎng)廠施工技術(shù)交底
- 2025至2030全球及中國經(jīng)顱刺激器行業(yè)產(chǎn)業(yè)運行態(tài)勢及投資規(guī)劃深度研究報告
評論
0/150
提交評論