2022年內(nèi)蒙古巴彥淖爾市臨河區(qū)數(shù)學(xué)九年級第一學(xué)期期末檢測模擬試題含解析_第1頁
2022年內(nèi)蒙古巴彥淖爾市臨河區(qū)數(shù)學(xué)九年級第一學(xué)期期末檢測模擬試題含解析_第2頁
2022年內(nèi)蒙古巴彥淖爾市臨河區(qū)數(shù)學(xué)九年級第一學(xué)期期末檢測模擬試題含解析_第3頁
2022年內(nèi)蒙古巴彥淖爾市臨河區(qū)數(shù)學(xué)九年級第一學(xué)期期末檢測模擬試題含解析_第4頁
2022年內(nèi)蒙古巴彥淖爾市臨河區(qū)數(shù)學(xué)九年級第一學(xué)期期末檢測模擬試題含解析_第5頁
免費預(yù)覽已結(jié)束,剩余14頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.函數(shù)y=3(x﹣2)2+4的圖像的頂點坐標是()A.(3,4) B.(﹣2,4) C.(2,4) D.(2,﹣4)2.關(guān)于拋物線,下列說法錯誤的是A.開口向上 B.對稱軸是y軸C.函數(shù)有最大值 D.當x>0時,函數(shù)y隨x的增大而增大3.二次函數(shù)y=ax2+bx+c(a≠0,a、b、c為常數(shù))的圖象如圖所示,則方程ax2+bx+c=m有實數(shù)根的條件是()A.m≥﹣4 B.m≥0 C.m≥5 D.m≥64.的值等于()A. B. C. D.5.若兩個相似三角形的周長之比是1:4,那么這兩個三角形的面積之比是()A.1:4 B.1:2 C.1:16 D.1:86.如圖,△ABC中,AB=AC,∠ABC=70°,點O是△ABC的外心,則∠BOC的度數(shù)為()A.40° B.60° C.70° D.80°7.如圖,正方形ABCD的邊長為3,點E、F分別在邊BC、CD上,將AB、AD分別沿AE、AF折疊,點B、D恰好都落在點G處,已知BE=1,則EF的長為(

)A. B. C. D.38.四張背面完全相同的卡片,正面分別畫有平行四邊形、菱形、等腰梯形、圓,現(xiàn)從中任意抽取一張,卡片上所畫圖形恰好是軸對稱圖形的概率為()A.1 B. C. D.9.在下列各式中,運算結(jié)果正確的是()A.x2+x2=x4 B.x﹣2x=﹣xC.x2?x3=x6 D.(x﹣1)2=x2﹣110.如圖,點A、B、C是⊙O上的三點,且四邊形ABCO是平行四邊形,OF⊥OC交圓O于點F,則∠BAF等于()A.12.5° B.15° C.20° D.22.5°二、填空題(每小題3分,共24分)11.一個正n邊形的一個外角等于72°,則n的值等于_____.12.如圖,拋物線解析式為y=x2,點A1的坐標為(1,1),連接OA1;過A1作A1B1⊥OA1,分別交y軸、拋物線于點P1、B1;過B1作B1A2⊥A1B1分別交y軸、拋物線于點P2、A2;過A2作A2B2⊥B1A2,分別交y軸、拋物線于點P3、B2…;則點Pn的坐標是_____.13.若,則_______.14.在平面直角坐標系中,已知,,,若線段與互相平分,則點的坐標為______.15.如圖,△ABC內(nèi)接于⊙O,若∠A=α,則∠OBC=_____.16.已知矩形ABCD,AB=3,AD=5,以點A為圓心,4為半徑作圓,則點C與圓A的位置關(guān)系為__________.17.在一個不透明的袋中有2個紅球,若干個白球,它們除顏色外其它都相同,若隨機從袋中摸出一個球,摸到紅球的概率是,則袋中有白球_________個.18.在平面直角坐標系中,反比例函數(shù)的圖象經(jīng)過點,,則的值是__________.三、解答題(共66分)19.(10分)在一個不透明的盒子中裝有張卡片,張卡片的正面分別標有數(shù)字,,,,,這些卡片除數(shù)字外,其余都相同.(1)從盒子中任意抽取一張卡片,恰好抽到標有偶數(shù)的卡片的概率是多少?(2)先從盒子中任意抽取一張卡片,再從余下的張卡片中任意抽取一張卡片,求抽取的張卡片上標有的數(shù)字之和大于的概率(畫樹狀圖或列表求解).20.(6分)已知關(guān)于x的一元二次方程(k﹣1)x2+4x+1=1.(1)若此方程的一個根為﹣1,求k的值;(2)若此一元二次方程有實數(shù)根,求k的取值范圍.21.(6分)已知二次函數(shù)y=x2﹣4x+1.(1)在所給的平面直角坐標系中畫出它的圖象;(2)若三點A(x1,y1),B(x2,y2),C(x1.y1)且2<x1<x2<x1,則y1,y2,y1的大小關(guān)系為.(1)把所畫的圖象如何平移,可以得到函數(shù)y=x2的圖象?請寫出一種平移方案.22.(8分)如圖,在Rt△ABC中,∠A=90°.AB=8cm,AC=6cm,若動點D從B出發(fā),沿線段BA運動到點A為止(不考慮D與B,A重合的情況),運動速度為2cm/s,過點D作DE∥BC交AC于點E,連接BE,設(shè)動點D運動的時間為x(s),AE的長為y(cm).(1)求y關(guān)于x的函數(shù)表達式,并寫出自變量x的取值范圍;(2)當x為何值時,△BDE的面積S有最大值?最大值為多少?23.(8分)如圖,的直徑AB為20cm,弦,的平分線交于D,求BC,AD,BD的長.24.(8分)在初中階段的函數(shù)學(xué)習中,我們經(jīng)歷了“確定函數(shù)的表達式——利用函數(shù)圖象研其性質(zhì)——運用函數(shù)解決問題”的學(xué)習過程.如圖,在平面直角坐標系中己經(jīng)繪制了一條直線.另一函數(shù)與的函數(shù)關(guān)系如下表:…-6-5-4-3-2-10123456……-2-0.2511.7521.751-0.25-2-4.25-7-10.25-14…(1)求直線的解析式;(2)請根據(jù)列表中的數(shù)據(jù),繪制出函數(shù)的近似圖像;(3)請根據(jù)所學(xué)知識并結(jié)合上述信息擬合出函數(shù)的解折式,并求出與的交點坐標.25.(10分)如圖①,是一張直角三角形紙片,∠B=90°,AB=12,BC=8,小明想從中剪出一個以∠B為內(nèi)角且面積最大的矩形,經(jīng)過操作發(fā)現(xiàn),當沿著中位線DE、EF剪下時,所得的矩形的面積最大.(1)請通過計算說明小明的猜想是否正確;(2)如圖②,在△ABC中,BC=10,BC邊上的高AD=10,矩形PQMN的頂點P、N分別在邊AB、AC上,頂點Q、M在邊BC上,求矩形PQMN面積的最大值;(3)如圖③,在五邊形ABCDE中,AB=16,BC=20,AE=10,CD=8,∠A=∠B=∠C=90°.小明從中剪出了一個面積最大的矩形(∠B為所剪出矩形的內(nèi)角),求該矩形的面積.26.(10分)用適當?shù)姆椒ń庀铝幸辉畏匠蹋?)x2+2x=3;(2)2x2﹣6x+3=1.

參考答案一、選擇題(每小題3分,共30分)1、C【詳解】函數(shù)y=3(x﹣2)2+4的圖像的頂點坐標是(2,4)故選C.2、C【分析】由拋物線解析式可求得其開口方向、頂點坐標、最值及增減性,則可判斷四個選項,可求得答案.【詳解】A.因為a=2>0,所以開口向上,正確;B.對稱軸是y軸,正確;C.當x=0時,函數(shù)有最小值0,錯誤;D.當x>0時,y隨x增大而增大,正確;故選:C【點睛】考查二次函數(shù)的圖象與性質(zhì),掌握二次函數(shù)的圖象與系數(shù)的關(guān)系是解題的關(guān)鍵.3、A【解析】利用函數(shù)圖象,當m≥﹣1時,直線y=m與二次函數(shù)y=ax2+bx+c有公共點,從而可判斷方程ax2+bx+c=m有實數(shù)根的條件.【詳解】∵拋物線的頂點坐標為(6,﹣1),即x=6時,二次函數(shù)有最小值為﹣1,∴當m≥﹣1時,直線y=m與二次函數(shù)y=ax2+bx+c有公共點,∴方程ax2+bx+c=m有實數(shù)根的條件是m≥﹣1.故選:A.【點睛】本題考查了圖象法求一元二次方程的近似根:作出函數(shù)的圖象,并由圖象確定方程的解的個數(shù);由圖象與y=h的交點位置確定交點橫坐標的范圍;4、A【分析】根據(jù)特殊角的三角函數(shù)值解題即可.【詳解】解:cos60°=.故選A.【點睛】本題考查了特殊角的三角函數(shù)值.5、C【分析】根據(jù)相似三角形的面積的比等于相似比的平方可得答案.【詳解】解:∵相似三角形的周長之比是1:4,∴對應(yīng)邊之比為1:4,∴這兩個三角形的面積之比是:1:16,故選C.【點睛】此題主要考查了相似三角形的性質(zhì),關(guān)鍵是掌握相似三角形的周長的比等于相似比;相似三角形的面積的比等于相似比的平方.6、D【分析】首先根據(jù)等腰三角形的性質(zhì)可得∠A的度數(shù),然后根據(jù)圓周角定理可得∠O=2∠A,進而可得答案.【詳解】解:∵AB=AC,

∴∠ABC=∠ACB=70°,

∴∠A=180°?70°×2=40°,

∵點O是△ABC的外心,

∴∠BOC=40°×2=80°,

故選:D.【點睛】此題主要考查了三角形的外接圓和外心,關(guān)鍵是掌握圓周角定理:在同圓或等圓中,同弧所對的圓周角等于圓心角的一半.7、B【解析】由圖形折疊可得BE=EG,DF=FG;再由正方形ABCD的邊長為3,BE=1,可得EG=1,EC=3-1=2,CF=3-FG;最后由勾股定理可以求得答案.【詳解】由圖形折疊可得BE=EG,DF=FG,∵正方形ABCD的邊長為3,BE=1,∴EG=1,EC=3-1=2,CF=3-FG,在直角三角形ECF中,∵EF2=EC2+CF2,∴(1+GF)2=22+(3-GF)2,解得GF=,∴EF=1+=.故正確選項為B.【點睛】此題考核知識點是:正方形性質(zhì);軸對稱性質(zhì);勾股定理.解題的關(guān)鍵在于:從圖形折疊過程找出對應(yīng)線段,利用勾股定理列出方程.8、B【解析】以上圖形中軸對稱圖形有菱形、等腰梯形、圓,所以概率為3÷4=.故選B9、B【分析】根據(jù)合并同類項、完全平方公式及同底數(shù)冪的乘法法則進行各選項的判斷即可.【詳解】解:A、x2+x2=2x2,故本選項錯誤;B、x﹣2x=﹣x,故本選項正確;C、x2?x3=x5,故本選項錯誤;D、(x﹣1)2=x2﹣2x+1,故本選項錯誤.故選B.【點睛】本題主要考查了合并同類項、完全平方公式及同底數(shù)冪的乘法運算等,掌握運算法則是解題的關(guān)鍵.10、B【詳解】解:連接OB,∵四邊形ABCO是平行四邊形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB為等邊三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圓周角定理得∠BAF=∠BOF=15°故選:B二、填空題(每小題3分,共24分)11、1.【分析】可以利用多邊形的外角和定理求解.【詳解】解:∵正n邊形的一個外角為72°,∴n的值為360°÷72°=1.故答案為:1【點睛】本題考查了多邊形外角和,熟記多邊形的外角和等于360度是解題的關(guān)鍵.12、(0,n2+n)【分析】根據(jù)待定系數(shù)法分別求得直線OA1、A2B1、A2B2……的解析式,即可求得P1、P2、P3…的坐標,得出規(guī)律,從而求得點Pn的坐標.【詳解】解:∵點A1的坐標為(1,1),∴直線OA1的解析式為y=x,∵A1B1⊥OA1,∴OP1=2,∴P1(0,2),設(shè)A1P1的解析式為y=kx+b1,∴,解得,∴直線A1P1的解析式為y=﹣x+2,解求得B1(﹣2,4),∵A2B1∥OA1,設(shè)B1P2的解析式為y=x+b2,∴﹣2+b2=4,∴b2=6,∴P2(0,6),解求得A2(3,9)設(shè)A1B2的解析式為y=﹣x+b3,∴﹣3+b3=9,∴b3=12,∴P3(0,12),…∴Pn(0,n2+n),故答案為(0,n2+n).【點睛】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)圖象上點的坐標特征,待定系數(shù)法求一次函數(shù)的解析式,根據(jù)一次函數(shù)圖象上點的坐標特征得出規(guī)律是解題的關(guān)鍵.13、12【分析】根據(jù)比例的性質(zhì)即可求解.【詳解】∵,∴,故答案為:.【點睛】本題考查了比例的性質(zhì),解答本題的關(guān)鍵是明確比例的性質(zhì)的含義.14、【分析】根據(jù)題意畫出圖形,利用平行四邊形的性質(zhì)得出D點坐標.【詳解】解:如圖所示:∵A(2,3),B(0,1),C(3,1),線段AC與BD互相平分,∴D點坐標為:(5,3),故答案為:(5,3).【點睛】此題考查了平行四邊形的性質(zhì),圖形與坐標,正確畫出圖形是解題關(guān)鍵.15、90°﹣α.【分析】首先連接OC,由圓周角定理,可求得∠BOC的度數(shù),又由等腰三角形的性質(zhì),即可求得∠OBC的度數(shù).【詳解】連接OC.∵∠BOC=2∠BAC,∠BAC=α,∴∠BOC=2α.∵OB=OC,∴∠OBC故答案為:.【點睛】此題考查了圓周角定理與等腰三角形的性質(zhì).此題比較簡單,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.16、點C在圓外【分析】由r和CA,AB、DA的大小關(guān)系即可判斷各點與⊙A的位置關(guān)系.【詳解】解:∵AB=3厘米,AD=5厘米,∴AC=厘米,∵半徑為4厘米,∴點C在圓A外【點睛】本題考查了對點與圓的位置關(guān)系的判斷.關(guān)鍵要記住若半徑為r,點到圓心的距離為d,則有:當d>r時,點在圓外;當d=r時,點在圓上,當d<r時,點在圓內(nèi).17、6【分析】根據(jù)概率公式結(jié)合取出紅球的概率即可求出袋中球的總個數(shù).【詳解】解:設(shè)袋中有x個球.根據(jù)題意得,解得x=8(個),8-2=6個,∴袋中有8個白球.故答案為:6.【點睛】此題考查了概率的計算方法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.18、【分析】將點B的坐標代入反比例函數(shù)求出k,再將點A的坐標代入計算即可;【詳解】(1)將代入得,k==-6,所以,反比例函數(shù)解析式為,將點的坐標代入得所以m=,故填:.【點睛】此題主要考查反比例函數(shù)的圖像與性質(zhì),解題的關(guān)鍵是熟知待定系數(shù)法求解析式.三、解答題(共66分)19、(1);(2)0.6【分析】(1)裝有張卡片,其中有2張偶數(shù),直接用公式求概率即可.(2)根據(jù)抽取結(jié)果畫樹狀圖或列表都可以,再根據(jù)樹狀圖來求符合條件的概率.【詳解】解:(1)在一個不透明的盒子中裝有張卡片,張卡片的正面分別標有數(shù)字,,,,,5張卡片中偶數(shù)有2張,抽出偶數(shù)卡片的概率=(2)畫樹狀如圖概率為【點睛】本題考查了用概率的公式來求概率和樹狀統(tǒng)計圖或列表統(tǒng)計圖.20、(2);(2)且.【分析】(2)把x=﹣2代入原方程求k值;(2)一元二次方程的判別式是非負數(shù),且二次項系數(shù)不等于2.【詳解】解:(2)將x=﹣2代入一元二次方程(k﹣2)x2+4x+2=2得,(k﹣2)﹣4+2=2,解得k=4;(2)∵若一元二次方程(k﹣2)x2+4x+2=2有實數(shù)根,∴△=26﹣4(k﹣2)≥2,且k﹣2≠2解得k≤5且k﹣2≠2,即k的取值范圍是k≤5且k≠2.21、(1)答案見解析;(2)y1<y2<y1;(1)先向左平移2個單位,再向上平移1個單位.【分析】(1)化成頂點式,得到頂點坐標,利用描點法畫出即可;(2)根據(jù)圖象即可求得;(1)利用平移的性質(zhì)即可求得.【詳解】(1)∵y=x2﹣4x+1=(x﹣2)2﹣1,∴頂點為(2,﹣1),畫二次函數(shù)y=x2﹣4x+1的圖象如圖;(2)由圖象可知:y1<y2<y1;故答案為y1<y2<y1;(1)∵y=x2﹣4x+1=(x﹣2)2﹣1的頂點為(2,﹣1),y=x2的頂點為(0,0),∴二次函數(shù)y=x2﹣4x+1=(x﹣2)2﹣1先向左平移2個單位,再向上平移1個單位可以得到函數(shù)y=x2的圖象.【點睛】本題考查二次函數(shù)的圖象與性質(zhì),解題的關(guān)鍵是掌握二次函數(shù)的圖象與性質(zhì).22、(1)(0<x<4);(1)當x=1時,S△BDE最大,最大值為6cm1.【分析】(1)根據(jù)已知條件DE∥BC可以判定△ADE∽△ABC;然后利用相似三角形的對應(yīng)邊成比例求得;最后用x、y表示該比例式中的線段的長度;(1)根據(jù)∠A=90°得出S△BDE=?BD?AE,從而得到一個面積與x的二次函數(shù),從而求出最大值;【詳解】(1)動點D運動x秒后,BD=1x.又∵AB=8,∴AD=8-1x.∵DE∥BC,∴,∴,∴y關(guān)于x的函數(shù)關(guān)系式為(0<x<4).(1)解:S△BDE==(0<x<4).當時,S△BDE最大,最大值為6cm1.【點睛】本題主要考查相似三角形的判定與性質(zhì)、三角形的面積列出二次函數(shù)關(guān)系式,利用二次函數(shù)求最值問題,建立二次函數(shù)模型是解題的關(guān)鍵.23、BC=16cm,AD=BD=10cm.【解析】利用圓周角定理及勾股定理即可求出答案.解:∵AB是⊙O的直徑,∴∠ACB=90°,∴BC==16(cm);∵CD是∠ACB的平分線,∴,∴AD=BD,∴AD=BD=×AB=10(cm).24、(1);(2)見解析;(3)交點為和【分析】(1)根據(jù)待定系數(shù)法即可求出直線的解析式;(2)描點連線即可;(3)根據(jù)圖象得出函數(shù)為二次函數(shù),頂點坐標為(-2,2),用待定系數(shù)法即可求出拋物線的解析式,解方程組即可得出與交點坐標.【詳解】(1)設(shè)直線的解析式為y=kx+m.由圖象可知,直線過點(6,0),(0,-3),∴,解得:,∴;(2)圖象如圖:(3)由圖象可知:函數(shù)為拋物線,頂點為.設(shè)其解析式為:從表中選一點代入得:1=4a+2,解出:,∴,即.聯(lián)立兩個解析式:,解得:或,∴交點為和.【點睛】本題考查了二次函數(shù)的圖象和性質(zhì).根據(jù)圖象求出一次函數(shù)和二次函數(shù)的解析式是解答本題的關(guān)鍵.25、(1)正確,理由見解析;(2)當a=5時,S矩形MNPQ最大為25;(3)矩形的最大面積為1.【分析】(1)設(shè)BF=x,則AF=12﹣x,證明△AFE∽△ABC,進而表示出EF,利用面積公式得出S矩形BDEF=﹣(x﹣6)2+24,即可得出結(jié)論;(2)設(shè)DE=a,AE=10﹣a,則證明△APN∽△ABC,進而得出PN=10﹣a,利用面積公式S矩形MNPQ=﹣(a﹣5)2+25,即可得出結(jié)果;(3)延長BA、DE交于點F,延長BC、ED交于點G,延長AE、CD交于點H,取BF中點I,F(xiàn)G的中點K,連接IK,過點K作KL⊥BC于L,由矩形性質(zhì)知AE=EH=10、CD=DH=8,分別證△AEF≌△HED、△CDG≌△HDE得AF=DH=8、CG=HE=10,從而判斷出中位線IK的兩端點在線段AB和DE上,利用(1)的結(jié)論解答即可.【詳解】(1)正確;理由:設(shè)BF=x(0<x<12),∵AB=12,∴AF=12﹣x,過點F作FE∥BC交AC于E,過點E作ED∥AB交BC于D,∴四邊形BDEF是平行四邊形,∵∠B=90°,∴?BDEF是矩形,∵EF∥BC,∴△AFE∽△ABC,∴=,∴,∴EF=(12﹣x),∴S矩形BDEF=EF?BF=(12﹣x)?x=﹣(x﹣6)2+24∴當x=6時,S矩形BDEF最大=24,∴BF=6,AF=6,∴AF=BF,∴當沿著中位線DE、EF剪下時,所得的矩形的面積最大;(2)設(shè)DE=a,(0<a

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論