版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.已知(x2+y2)(x2+y2-1)-6=0,則x2+y2的值是()A.3或-2 B.-3或2 C.3 D.-22.如圖,將△ABC放在每個小正方形的邊長都為1的網(wǎng)格中,點A,B,C均在格點上,則tanA的值是()A. B. C.2 D.3.將拋物線y=(x-3)2-2向左平移()個單位后經(jīng)過點A(2,2)A.1 B.2 C.3 D.44.若關(guān)于x的方程kx2﹣2x﹣1=0有實數(shù)根,則實數(shù)k的取值范圍是()A.k>﹣1 B.k<1且k≠0 C.k≥﹣1且k≠0 D.k≥﹣15.一個鐵制零件(正方體中間挖去一個圓柱形孔)如圖放置,它的左視圖是()A.B.C.D.6.已知點為反比例函數(shù)圖象上的兩點,當時,下列結(jié)論正確的是()A. B.C. D.7.若將二次函數(shù)的圖象先向左平移2個單位長度,再向下平移2個單位長度,則所得圖象對應函數(shù)的表達式為()A. B.C. D.8.下列四個幾何體中,左視圖為圓的是()A. B. C. D.9.如圖,將△ABC繞點C順時針旋轉(zhuǎn)90°得到△EDC.若點A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是A.55° B.60° C.65° D.70°10.⊙O是半徑為1的圓,點O到直線L的距離為3,過直線L上的任一點P作⊙O的切線,切點為Q;若以PQ為邊作正方形PQRS,則正方形PQRS的面積最小為()A.7 B.8 C.9 D.1011.經(jīng)過某十字路口的汽車,可能直行,也可能向左轉(zhuǎn)或向右轉(zhuǎn),如果這三種可能性大小相同,則兩輛汽車經(jīng)過這個十字路口時,一輛向右轉(zhuǎn),一輛向左轉(zhuǎn)的概率是()A. B. C. D.12.如圖,在⊙O中,AB為直徑,圓周角∠ACD=20°,則∠BAD等于()A.20° B.40° C.70° D.80°二、填空題(每題4分,共24分)13.如圖,把△ABC繞點C按順時針方向旋轉(zhuǎn)35°,得到△A’B’C,A’B’交AC于點D,若∠A’DC=90°,則∠A=°.14.某廠前年繳稅萬元,今年繳稅萬元,如果該廠繳稅的年平均增長率為,那么可列方程為______.15.若⊙O的直徑是4,圓心O到直線l的距離為3,則直線l與⊙O的位置關(guān)系是_________.16.反比例函數(shù)的圖象在一、三象限,函數(shù)圖象上有兩點A(,y1,)、B(5,y2),則y1與y2,的大小關(guān)系是__________17.年月日我國自主研發(fā)的大型飛機成功首飛,如圖給出了一種機翼的示意圖,其中,,則的長為_______.18.點是二次函數(shù)圖像上一點,則的值為__________三、解答題(共78分)19.(8分)已知拋物線y=2x2-12x+13(1)當x為何值時,y有最小值,最小值是多少?(2)當x為何值時,y隨x的增大而減小(3)將該拋物線向右平移2個單位,再向上平移2個單位,請直接寫出新拋物線的表達式20.(8分)某商場要經(jīng)營一種新上市的文具,進價為20元/件,試營銷階段發(fā)現(xiàn):當銷售價格為25元/件時,每天的銷售量為250件,每件銷售價格每上漲1元,每天的銷售量就減少10件.(1)當銷售價格上漲時,請寫出每天的銷售量(件)與銷售價格(元/件)之間的函數(shù)關(guān)系式.(2)如果要求每天的銷售量不少于10件,且每件文具的利潤至少為18元,間當銷售價格定為多少時,該文具每天的銷售利潤最大,最大利潤為多少?21.(8分)如圖,在中,,的平分線交于,為上一點,,以為圓心,以的長為半徑畫圓.(1)求證:是⊙的切線;(2)求證:.22.(10分)已知二次函數(shù)y=x2﹣4x+1.(1)在所給的平面直角坐標系中畫出它的圖象;(2)若三點A(x1,y1),B(x2,y2),C(x1.y1)且2<x1<x2<x1,則y1,y2,y1的大小關(guān)系為.(1)把所畫的圖象如何平移,可以得到函數(shù)y=x2的圖象?請寫出一種平移方案.23.(10分)綜合與探究如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(﹣3,0)、B兩點,與y軸相交于點.當x=﹣4和x=2時,二次函數(shù)y=ax2+bx+c(a≠0)的函數(shù)值y相等,連接AC,BC.(1)求拋物線的解析式;(2)判斷△ABC的形狀,并說明理由;(3)若點M、N同時從B點出發(fā),均以每秒1個單位長度的速度分別沿BA、BC邊運動,其中一個點到達終點時,另一點也隨之停止運動,當運動時間為t秒時,連接MN,將△BMN沿MN翻折,B點恰好落在AC邊上的P處,則t的值為,點P的坐標為;(4)拋物線對稱軸上是否存在一點F,使得△ACF是以AC為直角邊的直角三角形?若不存在,請說明理由;若存在,請直接寫出點F的坐標.24.(10分)2019年全國青少年禁毒知識競賽開始以來,某市青少年學生踴躍參加,掀起了學習禁毒知識的熱潮,禁毒知識競賽的成績分為四個等級:優(yōu)秀,良好,及格,不及格.為了了解該市廣大學生參加禁毒知識競賽的成績,抽取了部分學生的成績,根據(jù)抽查結(jié)果,繪制了如下兩幅不完整的統(tǒng)計圖:(1)本次抽查的人數(shù)是;扇形統(tǒng)計圖中不及格學生所占的圓心角的度數(shù)為;(2)補全條形統(tǒng)計圖;(3)若某校有2000名學生,請你根據(jù)調(diào)查結(jié)果估計該校學生知識競賽成績?yōu)椤皟?yōu)秀”和“良好”兩個等級共有多少人?25.(12分)如圖,在矩形ABCD中,點E是AD上的一個動點,連接BE,作點A關(guān)于BE的對稱點F,且點F落在矩形ABCD的內(nèi)部,連接AF,BF,EF,過點F作GF⊥AF交AD于點G,設.(1)求證:AE=GE;(2)當點F落在AC上時,用含n的代數(shù)式表示的值;(3)若AD=4AB,且以點F,C,G為頂點的三角形是直角三角形,求n的值.26.先化簡,再求值:,其中a=2.
參考答案一、選擇題(每題4分,共48分)1、C【分析】設m=x2+y2,則有,求出m的值,結(jié)合x2+y20,即可得到答案.【詳解】解:根據(jù)題意,設m=x2+y2,∴原方程可化為:,∴,解得:或;∵,∴,∴;故選:C.【點睛】本題考查了換元法求一元二次方程,解題的關(guān)鍵是熟練掌握解一元二次方程的方法和步驟.2、D【解析】首先構(gòu)造以A為銳角的直角三角形,然后利用正切的定義即可求解.【詳解】連接BD,則BD=,AD=2,則tanA===.故選D.【點睛】本題考查銳角三角函數(shù)的定義及運用:在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊,構(gòu)造直角三角形是本題的關(guān)鍵.3、C【分析】直接利用二次函數(shù)平移規(guī)律結(jié)合二次函數(shù)圖像上點的性質(zhì)進而得出答案.【詳解】解:∵將拋物線向左平移后經(jīng)過點∴設平移后的解析式為∴∴或(不合題意舍去)∴將拋物線向左平移個單位后經(jīng)過點.故選:C【點睛】本題主要考查的是二次函數(shù)圖象的平移,根據(jù)平移規(guī)律“左加右減,上加下減”利用頂點的變化確定圖形的變化是解題的關(guān)鍵.4、C【分析】根據(jù)根的判別式()即可求出答案.【詳解】由題意可知:∴∵∴且,故選:C.【點睛】本題考查了根的判別式的應用,因為存在實數(shù)根,所以根的判別式成立,以此求出實數(shù)k的取值范圍.5、C【解析】試題解析:從左邊看一個正方形被分成三部分,兩條分式是虛線,故C正確;故選C.考點:簡單幾何體的三視圖.6、A【分析】根據(jù)反比例函數(shù)在第一象限內(nèi)的增減性即可得出結(jié)論.【詳解】∵反比例函數(shù)在時,y隨著x的增大而減小,∴當時,故選:A.【點睛】本題主要考查反比例函數(shù)的性質(zhì),掌握反比例函數(shù)的性質(zhì)是解題的關(guān)鍵.7、C【分析】根據(jù)拋物線的平移規(guī)律:上加下減,左加右減解答即可.【詳解】解:將的圖象先向左平移2個單位長度,再向下平移2個單位長度,則所得二次函數(shù)的表達式為:.故選:C.【點睛】本題考查了拋物線的平移,屬于基本知識題型,熟練掌握拋物線的平移規(guī)律是解題的關(guān)鍵.8、A【分析】根據(jù)三視圖的法則可得出答案.【詳解】解:左視圖為從左往右看得到的視圖,A.球的左視圖是圓,B.圓柱的左視圖是長方形,C.圓錐的左視圖是等腰三角形,D.圓臺的左視圖是等腰梯形,故符合題意的選項是A.【點睛】錯因分析較容易題.失分原因是不會判斷常見幾何體的三視圖.9、C【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)和三角形內(nèi)角和解答即可.【詳解】∵將△ABC繞點C順時針旋轉(zhuǎn)90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵點A,D,E在同一條直線上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故選C.【點睛】此題考查旋轉(zhuǎn)的性質(zhì),關(guān)鍵是根據(jù)旋轉(zhuǎn)的性質(zhì)和三角形內(nèi)角和解答.10、B【分析】連接OQ、OP,作于H,如圖,則OH=3,根據(jù)切線的性質(zhì)得,利用勾股定理得到,根據(jù)垂線段最短,當OP=OH=3時,OP最小,于是PQ的最小值為,即可得到正方形PQRS的面積最小值1.【詳解】解:連接OQ、OP,作于H,如圖,則OH=3,∵PQ為的切線,∴在Rt中,,當OP最小時,PQ最小,正方形PQRS的面積最小,當OP=OH=3時,OP最小,所以PQ的最小值為,所以正方形PQRS的面積最小值為1故選B11、B【分析】可以采用列表法或樹狀圖求解.可以得到一共有9種情況,一輛向右轉(zhuǎn),一輛向左轉(zhuǎn)有2種結(jié)果數(shù),根據(jù)概率公式計算可得.【詳解】畫“樹形圖”如圖所示:∵這兩輛汽車行駛方向共有9種可能的結(jié)果,其中一輛向右轉(zhuǎn),一輛向左轉(zhuǎn)的情況有2種,∴一輛向右轉(zhuǎn),一輛向左轉(zhuǎn)的概率為;故選B.【點睛】此題考查了樹狀圖法求概率.解題的關(guān)鍵是根據(jù)題意畫出樹狀圖,再由概率=所求情況數(shù)與總情況數(shù)之比求解12、C【分析】連接OD,根據(jù)∠AOD=2∠ACD,求出∠AOD,利用等腰三角形的性質(zhì)即可解決問題.【詳解】連接OD.∵∠ACD=20°,∴∠AOD=2∠ACD=40°.∵OA=OD,∴∠BAD=∠ADO=(180°﹣40°)=70°.故選C.【點睛】本題考查了圓周角定理、等腰三角形的性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,學會添加常用輔助線,屬于中考??碱}型.二、填空題(每題4分,共24分)13、55.【詳解】試題分析:∵把△ABC繞點C按順時針方向旋轉(zhuǎn)35°,得到△A’B’C∴∠ACA’=35°,∠A=∠A’,.∵∠A’DC=90°,∴∠A’=55°.∴∠A=55°.考點:1.旋轉(zhuǎn)的性質(zhì);2.直角三角形兩銳角的關(guān)系.14、【分析】由題意設該廠繳稅的年平均增長率為x,根據(jù)該廠前年及今年的納稅額,即可得出關(guān)于x的一元二次方程.【詳解】解:如果該廠繳稅的年平均增長率為,那么可以用表示今年的繳稅數(shù),今年的繳稅數(shù)為,然后根據(jù)題意列出方程.故答案為:.【點睛】本題考查一元二次方程的應用,找準等量關(guān)系,正確列出一元二次方程是解題的關(guān)鍵.15、相離【解析】r=2,d=3,則直線l與⊙O的位置關(guān)系是相離16、【分析】根據(jù)反比例函數(shù)的性質(zhì),雙曲線的兩支分別位于第一、第三象限時k>0,在每一象限內(nèi)y隨x的增大而減小,可得答案.【詳解】解:∵反比例函數(shù)的圖象在一、三象限,∴,∴在每一象限內(nèi)y隨x的增大而減小,∵,∴;故答案為:.【點睛】此題主要考查了反比例函數(shù)的性質(zhì),關(guān)鍵是掌握反比例函數(shù)(k≠0),當k>0,雙曲線的兩支分別位于第一、第三象限,在每一象限內(nèi)y隨x的增大而減?。?7、【分析】延長交于點,設于點,通過解直角三角形可求出、的長度,再利用即可求出結(jié)論.【詳解】延長交于點,設于點,如圖所示,在中,,,.在中,,,,,,,,故答案為:.【點睛】本題考查了解直角三角形的應用.通過解直角三角形求出、的長度是解題的關(guān)鍵.18、1【分析】把點代入即可求得值,將變形,代入即可.【詳解】解:∵點是二次函數(shù)圖像上,
∴則.∴
故答案為:1.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征,根據(jù)點坐標求待定系數(shù)是解題的關(guān)鍵.三、解答題(共78分)19、(1)當x=3時,y有最小值,最小值是-5;(2)當x<3時,y隨x的增大而減?。唬?)y=2x2-20x+47.【分析】(1)將二次函數(shù)的一般式轉(zhuǎn)化為頂點式,即可求出結(jié)論;(2)根據(jù)拋物線的開口方向和對稱軸左右兩側(cè)的增減性即可得出結(jié)論;(3)根據(jù)拋物線的平移規(guī)律:括號內(nèi)左加右減,括號外上加下減,即可得出結(jié)論.【詳解】解:(1)y=2x2-12x+13=2(x2-6x)+13=2(x2-6x+9-9)+13=2(x-3)2-5∵2>0∴當x=3時,y有最小值,最小值是-5;(2)∵2>0,對稱軸為x=3∴拋物線的開口向上∴當x<3時,y隨x的增大而減?。唬?)∵將該拋物線向右平移2個單位,再向上平移2個單位,∴平移后的解析式為:y=2(x-3-2)2-5+2=2(x-5)2-3即新拋物線的表達式為y=2x2-20x+47【點睛】此題考查的是二次函數(shù)的圖像及性質(zhì),掌握用二次函數(shù)的頂點式求最值、二次函數(shù)的增減性和二次函數(shù)的平移規(guī)律是解決此題的關(guān)鍵.20、(1);(2)當銷售價格定為38元時,該文具每天的銷售利潤最大,最大利潤為1元【分析】(1)根據(jù)實際銷售量等于,化簡即可;(2)利用二次函數(shù)的性質(zhì)及題中對銷售量及每件文具利潤的約束條件,可求得答案.【詳解】解:(1)∴每天的銷售量(件)與銷售價格(元/件)之間的函數(shù)關(guān)系式為:;(2)設銷售利潤為元,由題意得:∵,解得:∵,拋物線的對稱軸為直線∴拋物線開口向下,在對稱軸的右側(cè),隨的增大而減小∴當時,取最大值為1.答:當銷售價格定為38元時,該文具每天的銷售利潤最大,最大利潤為1元.【點睛】本題主要考查了一元二次方程和二次函數(shù)的應用,準確列式是解題的關(guān)鍵.21、(1)證明見解析;(2)證明見解析.【分析】(1)過點D作DF⊥AC于F,求出BD=DF等于半徑,得出AC是⊙D的切線;(2)先證明△BDE≌△FCD(HL),根據(jù)全等三角形對應邊相等及切線的性質(zhì)的AB=AF,得出AB+EB=AC.【詳解】證明:(1)過點作于;∵,以為圓心,以的長為半徑畫圓,∴AB為圓D的切線又∵,且AD平分∠BAC,且DF⊥AC,是⊙的切線.(2)由,DB是半徑得AB的是⊙O的切線,又由(1)可知是⊙的切線∵,∴即.【點睛】本題考查的是切線的判定:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線;及全等三角形的判斷,全等三角形的對應邊相等.22、(1)答案見解析;(2)y1<y2<y1;(1)先向左平移2個單位,再向上平移1個單位.【分析】(1)化成頂點式,得到頂點坐標,利用描點法畫出即可;(2)根據(jù)圖象即可求得;(1)利用平移的性質(zhì)即可求得.【詳解】(1)∵y=x2﹣4x+1=(x﹣2)2﹣1,∴頂點為(2,﹣1),畫二次函數(shù)y=x2﹣4x+1的圖象如圖;(2)由圖象可知:y1<y2<y1;故答案為y1<y2<y1;(1)∵y=x2﹣4x+1=(x﹣2)2﹣1的頂點為(2,﹣1),y=x2的頂點為(0,0),∴二次函數(shù)y=x2﹣4x+1=(x﹣2)2﹣1先向左平移2個單位,再向上平移1個單位可以得到函數(shù)y=x2的圖象.【點睛】本題考查二次函數(shù)的圖象與性質(zhì),解題的關(guān)鍵是掌握二次函數(shù)的圖象與性質(zhì).23、(1);(1)△ABC是直角三角形,理由見解析;(3),;(4)存在,F(xiàn)1,F(xiàn)1.【分析】(1)由對稱性先求出點B的坐標,可設拋物線的解析式為y=a(x+3)(x﹣1),將C坐標代入y=a(x+3)(x﹣1)即可;(1)先判斷△ABC為直角三角形,分別求出AB,AC,BC的長,由勾股定理的逆定理可證明結(jié)論;(3)因為點M、N同時從B點出發(fā),均以每秒1個單位長度的速度分別沿BA、BC邊運動,所以BM=BN=t,證四邊形PMBN是菱形,設PM與y軸交于H,證△CPN∽△CAB,由相似三角形的性質(zhì)可求出t的值,CH的長,可得出點P縱坐標,求出直線AC的解析式,將點P縱坐標代入即可;(4)求出直線BC的解析式,如圖1,當∠ACF=90°時,點B,C,F(xiàn)在一條直線上,求出直線BC與對稱軸的交點即可;當∠CAF=90°時,求出直線AF的解析式,再求其與對稱軸的交點即可.【詳解】(1)∵在拋物線y=ax1+bx+c中,當x=﹣4和x=1時,二次函數(shù)y=ax1+bx+c的函數(shù)值y相等,∴拋物線的對稱軸為x1,又∵拋物線y=ax1+bx+c與x軸交于A(﹣3,0)、B兩點,由對稱性可知B(1,0),∴可設拋物線的解析式為y=a(x+3)(x﹣1),將C(0,)代入y=a(x+3)(x﹣1),得:﹣3a,解得:a,∴此拋物線的解析式為y(x+3)(x﹣1)x1x;(1)△ABC為直角三角形.理由如下:∵A(﹣3,0),B(1,0),C(0,),∴OA=3,OB=1,OC,∴AB=OA+OB=4,AC1,BC1.∵AC1+BC1=16,AB1=16,∴AC1+BC1=AB1,∴△ABC是直角三角形;(3)∵點M、N同時從B點出發(fā),均以每秒1個單位長度的速度分別沿BA、BC邊運動,∴BM=BN=t,由翻折知,△BMN≌△PMN,∴BM=PM=BN=PN=t,∴四邊形PMBN是菱形,∴PN∥AB,∴△CPN∽△CAB,設PM與y軸交于H,∴,即,解得:t,CH,∴OH=OC﹣CH,∴yP,設直線AC的解析式為y=kx,將點A(﹣3,0)代入y=kx,得:k,∴直線AC的解析式為yx,將yP代入yx,∴x=﹣1,∴P(﹣1,).故答案為:,(﹣1,);(4)設直線BC的解析式為y=kx,將點B(1,0)代入y=kx,得:k,∴直線BC的解析式為yx,由(1)知△ABC為直角三角形,∠ACB=90°.①如圖1,當∠ACF=90°時,點B,C,F(xiàn)在一條直線上,在yx中,當x=﹣1時,y=1,∴F1(﹣1,1);②當∠CAF=90°時,AF∥BC,∴可設直線AF的解析式為yx+n,將點A(﹣3,0)代入yx+n,得:n=﹣3,∴直線AF的解析式為yx﹣3,在yx﹣3中,當x=﹣1時,y=﹣1,∴F1(﹣1,﹣1).綜上所述:點F的坐標為F1(﹣1,1),F(xiàn)1(﹣1,﹣1).【點睛】本題是二次函數(shù)綜合題.考查了待定系數(shù)法求解析式,勾股定理,相似三角形的判定與性質(zhì),直角三角形的性質(zhì)等,解答本題的關(guān)鍵是注意分類討論思想在解題過程中的運用.24、(1)120,18°;(2)詳見解析;(3)1000【分析】(1)由優(yōu)秀的人數(shù)及其所占百分比可得總?cè)藬?shù);用360°乘以不及格人數(shù)所占比例即可得出不及格學生所占的圓心角的度數(shù);(2)用總?cè)藬?shù)減去各等級人數(shù)之和求出良好的人數(shù),據(jù)此可補全條形圖;(3)用總?cè)藬?shù)乘以樣本中“優(yōu)秀”和“良好”人數(shù)和占被調(diào)查人數(shù)的比例即可得出答案.【詳解】解:(1)本次抽查的人數(shù)為:24÷20%=120(人),扇形統(tǒng)計圖中不及格學生所占的圓心角的度數(shù)為360°×=18°,故答案為:120,18°;(2)良好的人數(shù)為:120﹣(24+54+6)=36(人),補全圖形如下:(3)估計該校學生知識競賽成績?yōu)椤皟?yōu)秀”和“良好”兩個等級共有:2000×=1000(人).【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?5、(1)證明見解析;(2);(3)n=2或.【分析】(1)因為GF⊥AF,由對稱易得AE=EF,則由直角三角形的兩個銳角的和為90度,且等邊對
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工會減肥活動方案策劃(3篇)
- 庭院吊橋施工方案(3篇)
- 內(nèi)分泌代謝護理培訓課件
- 環(huán)保設施運行保養(yǎng)管理制度(3篇)
- 疫情時代企業(yè)薪金管理制度(3篇)
- 破冰活動策劃方案名稱(3篇)
- 綠色森林物業(yè)管理制度(3篇)
- 裝飾裝修工程現(xiàn)場管理制度(3篇)
- 酒店化學管理制度及流程(3篇)
- 《GAT 738.3-2007保安服務管理信息規(guī)范 第3部分:保安服務對象編碼》專題研究報告深度
- 《創(chuàng)新創(chuàng)業(yè)基礎》課件-項目1:創(chuàng)新創(chuàng)業(yè)基礎認知
- 2026年初一寒假體育作業(yè)安排
- 物流行業(yè)運輸司機安全駕駛與效率績效評定表
- 2026北京市通州區(qū)事業(yè)單位公開招聘工作人員189人筆試重點基礎提升(共500題)附帶答案詳解
- 2025~2026學年山東省菏澤市牡丹區(qū)第二十一初級中學八年級上學期期中歷史試卷
- 2026國家統(tǒng)計局儀征調(diào)查隊招聘輔助調(diào)查員1人(江蘇)考試參考試題及答案解析
- 水利工程施工質(zhì)量檢測方案
- 2025年北京高中合格考政治(第一次)試題和答案
- 卵巢類癌診治中國專家共識(2025年版)
- 中國農(nóng)業(yè)科學院2026年度第一批統(tǒng)一公開招聘筆試考試參考試題及答案解析
- 飼料運輸合同范本
評論
0/150
提交評論