2022年寧夏回族自治區(qū)中衛(wèi)市普通高校對口單招高等數(shù)學一自考預測試題(含答案)_第1頁
2022年寧夏回族自治區(qū)中衛(wèi)市普通高校對口單招高等數(shù)學一自考預測試題(含答案)_第2頁
2022年寧夏回族自治區(qū)中衛(wèi)市普通高校對口單招高等數(shù)學一自考預測試題(含答案)_第3頁
2022年寧夏回族自治區(qū)中衛(wèi)市普通高校對口單招高等數(shù)學一自考預測試題(含答案)_第4頁
2022年寧夏回族自治區(qū)中衛(wèi)市普通高校對口單招高等數(shù)學一自考預測試題(含答案)_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022年寧夏回族自治區(qū)中衛(wèi)市普通高校對口單招高等數(shù)學一自考預測試題(含答案)學校:________班級:________姓名:________考號:________

一、單選題(20題)1.

2.

3.

4.由曲線y=1/X,直線y=x,x=2所圍面積為

A.A.

B.B.

C.C.

D.D.

5.函數(shù)f(x)在x=x0處連續(xù)是f(x)在x=x0處極限存在的()A.充分非必要條件B.必要非充分條件C.充分必要條件D.既不充分也不必要條件

6.當x→0時,sinx是sinx的等價無窮小量,則k=()A.0B.1C.2D.3

7.方程y'-3y'+2y=xe2x的待定特解y*應取().A.A.Axe2x

B.(Ax+B)e2x

C.Ax2e2x

D.x(Ax+B)e2x

8.A.沒有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線

9.微分方程y"-y'=0的通解為()。A.

B.

C.

D.

10.

11.

12.方程x2+2y2-z2=0表示的二次曲面是()

A.橢球面B.錐面C.旋轉(zhuǎn)拋物面D.柱面

13.A.e-1dx

B.-e-1dx

C.(1+e-1)dx

D.(1-e-1)dx

14.設()A.1B.-1C.0D.2

15.設函數(shù)f(x)在[0,b]連續(xù),在(a,b)可導,f′(x)>0.若f(a)·f(b)<0,則y=f(x)在(a,b)().

A.不存在零點

B.存在唯一零點

C.存在極大值點

D.存在極小值點

16.

17.剛體上A、B、C、D四點組成一個平行四邊形,如在其四個頂點作用四個力,此四個邊恰好組成封閉的力多邊形。則()

A.力系平衡

B.力系有合力

C.力系的合力偶矩等于平行四邊形ABCD的面積

D.力系的合力偶矩等于負的平行四邊形ABCD的面積的2倍

18.

19.

20.

二、填空題(20題)21.求22.設區(qū)域D:0≤x≤1,1≤y≤2,則

23.

24.

25.

26.

27.

28.

29.曲線y=x3-3x2-x的拐點坐標為____。

30.

31.32.∫(x2-1)dx=________。

33.34.函數(shù)y=x3-2x+1在區(qū)間[1,2]上的最小值為______.

35.

36.

37.

38.

39.

40.

三、計算題(20題)41.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.42.將f(x)=e-2X展開為x的冪級數(shù).

43.

44.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.45.46.設拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達式;

(2)求S(x)的最大值.

47.設平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.48.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.49.

50.

51.求微分方程y"-4y'+4y=e-2x的通解.

52.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?

53.證明:54.求微分方程的通解.55.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.56.57.當x一0時f(x)與sin2x是等價無窮小量,則58.求曲線在點(1,3)處的切線方程.59.

60.四、解答題(10題)61.62.設63.將f(x)=sin3x展開為x的冪級數(shù),并指出其收斂區(qū)間。64.65.

66.

67.所圍成的平面區(qū)域。68.

69.

70.y=xlnx的極值與極值點.

五、高等數(shù)學(0題)71.f(x)=lnx,則f[f(x)]=__________。六、解答題(0題)72.

參考答案

1.D

2.C解析:

3.D解析:

4.B本題考查了曲線所圍成的面積的知識點,

曲線y=1/X與直線y=x,x=2所圍成的區(qū)域D如下圖所示,

5.A函數(shù)f(x)在x=x0處連續(xù),則f(x)在x=x0處極限存在.但反過來卻不行,如函數(shù)f(x)=故選A。

6.B由等價無窮小量的概念,可知=1,從而k=1,故選B。也可以利用等價無窮小量的另一種表述形式,由于當x→0時,有sinx~x,由題設知當x→0時,kx~sinx,從而kx~x,可知k=1。

7.D本題考查的知識點為二階常系數(shù)線性非齊次微分方程特解y*的取法:

若自由項f(x)=Pn(x)eαx,當α不為特征根時,可設特解為

y*=Qn(x)eαx,

Qn(x)為x的待定n次多項式.

當α為單特征根時,可設特解為

y*=xQn(x)eαx,

當α為二重特征根時,可設特解為

y*=x2Qn(x)eαx.

所給方程對應齊次方程的特征方程為

r2-3r+2=0.

特征根為r1=1,r2=2.

自由項f(x)=xe2x,相當于α=2為單特征根.又因為Pn(x)為一次式,因此應選D.

8.D本題考查了曲線的漸近線的知識點,

9.B本題考查的知識點為二階常系數(shù)齊次微分方程的求解。微分方程為y"-y'=0特征方程為r2-r=0特征根為r1=1,r2=0方程的通解為y=C1ex+c2可知應選B。

10.C

11.C解析:

12.B對照二次曲面的標準方程,可知所給曲面為錐面,故選B。

13.D本題考查了函數(shù)的微分的知識點。

14.A

15.B由于f(x)在[a,b]上連續(xù)f(z)·fb)<0,由閉區(qū)間上連續(xù)函數(shù)的零點定理可知,y=f(x)在(a,b)內(nèi)至少存在一個零點.又由于f(x)>0,可知f(x)在(a,b)內(nèi)單調(diào)增加,因此f(x)在(a,b)內(nèi)如果有零點,則至多存在一個.

綜合上述f(x)在(a,b)內(nèi)存在唯一零點,故選B.

16.B

17.D

18.B解析:

19.A

20.C

21.=0。22.本題考查的知識點為二重積分的計算。

如果利用二重積分的幾何意義,可知的值等于區(qū)域D的面積.由于D是長、寬都為1的正形,可知其面積為1。因此

23.

24.

25.1/21/2解析:

26.

27.

28.29.(1,-1)

30.

31.2.

本題考查的知識點為二階導數(shù)的運算.

32.

33.

34.0本題考查的知識點為連續(xù)函數(shù)在閉區(qū)間上的最小值問題.

通常求解的思路為:

先求出連續(xù)函數(shù)f(x)在(a,b)內(nèi)的所有駐點x1,…,xk.

比較f(x1),f(x2),…,f(xk),f(a),f(b),其中最大(小)值即為f(x)在[a,b]上的最大(小)值,相應的x即為,(x)在[a,b]上的最大(小)值點.

由y=x3-2x+1,可得

Y'=3x2-2.

令y'=0得y的駐點為,所給駐點皆不在區(qū)間(1,2)內(nèi),且當x∈(1,2)時有

Y'=3x2-2>0.

可知y=x3-2x+1在[1,2]上為單調(diào)增加函數(shù),最小值點為x=1,最小值為f(1)=0.

注:也可以比較f(1),f(2)直接得出其中最小者,即為f(x)在[1,2]上的最小值.

本題中常見的錯誤是,得到駐點和之后,不討論它們是否在區(qū)間(1,2)內(nèi).而是錯誤地比較

從中確定f(x)在[1,2]上的最小值.則會得到錯誤結論.

35.

36.1/6

37.解析:

38.

本題考查的知識點為二元函數(shù)的偏導數(shù).

39.

40.(12)(01)

41.

42.

43.

44.

45.

46.

47.由二重積分物理意義知

48.

列表:

說明

49.由一階線性微分方程通解公式有

50.

51.解:原方程對應的齊次方程為y"-4y'+4y=0,

52.需求規(guī)律為Q=100ep-2.25p

∴當P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當P=10時,價格上漲1%需求量減少2.5%

53.

54.55.函數(shù)的定義域為

注意

56.57.由等價無窮小量的定義可知58.曲線方程為,點(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點x0處的導數(shù)f′(x0)存在,則表明曲線y=f(x)在點

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

59.

60.

61.本題考查的知識點為被積函數(shù)為分段函數(shù)的定積分.

當被積函數(shù)為分段函數(shù)時,應將積分區(qū)間分為幾個子區(qū)間,使被積函數(shù)在每個子區(qū)間內(nèi)有唯一的表達式.

62.

63.

64.

65.

66.67.解:D的圖形見右圖陰影部分.

68.

69.

70

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論