版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年廣東省云浮市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.當(dāng)x→0時(shí),sinx是sinx的等價(jià)無(wú)窮小量,則k=()A.0B.1C.2D.3
2.函數(shù)y=ex+e-x的單調(diào)增加區(qū)間是
A.(-∞,+∞)B.(-∞,0]C.(-1,1)D.[0,+∞)
3.
4.
5.A.0B.1C.2D.-1
6.
7.曲線y=x-3在點(diǎn)(1,1)處的切線斜率為()
A.-1B.-2C.-3D.-4
8.點(diǎn)作曲線運(yùn)動(dòng)時(shí),“勻變速運(yùn)動(dòng)”指的是()。
A.aτ為常量
B.an為常量
C.為常矢量
D.為常矢量
9.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=()。A.
B.
C.
D.
10.
11.()A.A.發(fā)散B.條件收斂C.絕對(duì)收斂D.斂散性不能確定
12.
13.設(shè)函數(shù)f(x)=2lnx+ex,則f'(2)等于
A.eB.1C.1+e2
D.ln2
14.平面x+y一3z+1=0與平面2x+y+z=0相互關(guān)系是()。
A.斜交B.垂直C.平行D.重合
15.
16.
17.圖示結(jié)構(gòu)中,F(xiàn)=10N,I為圓桿,直徑d=15mm,2為正方形截面桿,邊長(zhǎng)為a=20mm,α=30。,則各桿強(qiáng)度計(jì)算有誤的一項(xiàng)為()。
A.1桿受拉20kNB.2桿受壓17.3kNC.1桿拉應(yīng)力50MPaD.2桿壓應(yīng)力43.3MPa
18.
A.
B.1
C.2
D.+∞
19.A.e-2
B.e-1
C.e
D.e2
20.下列命題正確的是().A.A.
B.
C.
D.
二、填空題(20題)21.設(shè)y=sinx2,則dy=______.22.微分方程y''+6y'+13y=0的通解為_(kāi)_____.23.
24.
25.
26.
27.
28.
29.30.________.31.
32.
33.34.
35.
36.37.
38.
39.設(shè)f(x)=x(x-1),貝f'(1)=_________.
40.
三、計(jì)算題(20題)41.
42.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).43.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.44.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.45.求微分方程的通解.46.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則47.求曲線在點(diǎn)(1,3)處的切線方程.48.證明:49.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
50.
51.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.52.53.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).54.
55.56.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.57.
58.
59.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
60.求微分方程y"-4y'+4y=e-2x的通解.
四、解答題(10題)61.
62.
63.設(shè)y=e-3x+x3,求y'。
64.設(shè)y=xsinx,求y.
65.
66.67.設(shè)z=f(xy,x2),其中f(x,y)有連續(xù)偏導(dǎo)數(shù),求68.
69.
70.
五、高等數(shù)學(xué)(0題)71.f(x)=lnx,則f[f(x)]=__________。六、解答題(0題)72.
參考答案
1.B由等價(jià)無(wú)窮小量的概念,可知=1,從而k=1,故選B。也可以利用等價(jià)無(wú)窮小量的另一種表述形式,由于當(dāng)x→0時(shí),有sinx~x,由題設(shè)知當(dāng)x→0時(shí),kx~sinx,從而kx~x,可知k=1。
2.Dy=ex+e-x,則y'=ex-e-x,當(dāng)x>0時(shí),y'>0,所以y在區(qū)間[0,+∞)上單調(diào)遞增.
3.D
4.C
5.C
6.D解析:
7.C由導(dǎo)數(shù)的幾何意義知,若y=f(x)可導(dǎo),則曲線在點(diǎn)(x0,f(x0))處必定存在切線,且該切線的斜率為f"(x0)。由于y=x-3,y"=-3x-4,y"|x=1=-3,可知曲線y=x-3在點(diǎn)(1,1)處的切線斜率為-3,故選C。
8.A
9.C
10.A
11.C
12.B
13.C本題考查了函數(shù)在一點(diǎn)的導(dǎo)數(shù)的知識(shí)點(diǎn).
因f(x)=2lnx+ex,于是f'(x)=2/x+ex,故f'(2)=1+e2.
14.Bπ1x+y一3z+1=0的法向量n1=(1,1,一3)π2:2x+y+z=0的法向量n2=(2,1,1)∵n1.n2=(1,1,一3).(2,1,1)=0∵n1⊥n2;∴π1⊥π2
15.A
16.B
17.C
18.C
19.D由重要極限公式及極限運(yùn)算性質(zhì),可知故選D.
20.D本題考查的知識(shí)點(diǎn)為收斂級(jí)數(shù)的性質(zhì)和絕對(duì)收斂的概念.
由絕對(duì)收斂級(jí)數(shù)的性質(zhì)“絕對(duì)收斂的級(jí)數(shù)必定收斂”可知應(yīng)選D.
21.2xcosx2dx本題考查的知識(shí)點(diǎn)為一元函數(shù)的微分.
由于y=sinx2,y'=cosx2·(x2)'=2xcosx2,故dy=y'dx=2xcosx2dx.22.y=e-3x(C1cos2x+C2sin2x)微分方程y''+6y'+13y=0的特征方程為r2+6r+13=0,特征根為所以微分方程的通解為y=e-3x(C1cos2x+C2sin2x).23.
24.
解析:
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.36.e-1/237.1本題考查的知識(shí)點(diǎn)為定積分的換元積分法.
38.
39.1
40.-2-2解析:41.由一階線性微分方程通解公式有
42.43.函數(shù)的定義域?yàn)?/p>
注意
44.
45.46.由等價(jià)無(wú)窮小量的定義可知47.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
48.
49.
50.
51.由二重積分物理意義知
52.
53.
列表:
說(shuō)明
54.
則
55.
56.
57.
58.
59.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
60.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
61.
62.
63.
64.解
65.
66.
67.本題考查的知識(shí)點(diǎn)為求抽象函數(shù)的偏導(dǎo)數(shù).
已知z:f(xy,x2),其中f(x,y)有連續(xù)偏導(dǎo)數(shù),求.通常有兩種求解方法.
解法1令f'i表示廠對(duì)第i個(gè)位置變?cè)钠珜?dǎo)數(shù),則
這里應(yīng)指出,這是當(dāng)每個(gè)位置變?cè)獙?duì)x的偏導(dǎo)數(shù)易求時(shí),才采用此方法.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 生物標(biāo)志物在糖尿病分型中的臨床應(yīng)用
- 生物標(biāo)志物與藥物臨床前研究的轉(zhuǎn)化銜接
- 生物制品穩(wěn)定性試驗(yàn)風(fēng)險(xiǎn)評(píng)估策略應(yīng)用
- 核燃料元件制造工程師培訓(xùn)考核標(biāo)準(zhǔn)
- 電視臺(tái)節(jié)目策劃崗位的應(yīng)聘面試題參考
- 廈門(mén)建發(fā)信息技術(shù)部工程師崗位面試題庫(kù)含答案
- 求職知識(shí)產(chǎn)權(quán)管理崗位面試題庫(kù)
- 汽車制造質(zhì)量工程師面試題集及答案解析
- 考試題運(yùn)輸調(diào)度經(jīng)理專業(yè)能力測(cè)試
- 瓣膜介入器械術(shù)后康復(fù)方案
- 幼兒園小班音樂(lè)歌唱《碰一碰》課件
- 中醫(yī)診療技術(shù)操作規(guī)程
- CJT 340-2016 綠化種植土壤
- 二年級(jí)上冊(cè)口算練習(xí)1000道
- 2023年11月浙江省慈溪技師學(xué)院(慈溪杭州灣中等職業(yè)學(xué)校)公開(kāi)招聘1名派遣制工作人員筆試歷年高頻考點(diǎn)-難、易錯(cuò)點(diǎn)薈萃附答案帶詳解
- 農(nóng)業(yè)水價(jià)綜合改革
- 23秋國(guó)家開(kāi)放大學(xué)《液壓氣動(dòng)技術(shù)》形考任務(wù)1-3參考答案
- 廣東省通用安裝工程綜合定額(2018)Excel版
- 21ZJ111 變形縫建筑構(gòu)造
- 2023-2024學(xué)年四川省涼山州小學(xué)語(yǔ)文五年級(jí)期末高分試卷詳細(xì)參考答案解析
- GB/T 1443-2016機(jī)床和工具柄用自?shī)A圓錐
評(píng)論
0/150
提交評(píng)論