2022-2023學(xué)年寧夏回族自治區(qū)中衛(wèi)市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第1頁
2022-2023學(xué)年寧夏回族自治區(qū)中衛(wèi)市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第2頁
2022-2023學(xué)年寧夏回族自治區(qū)中衛(wèi)市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第3頁
2022-2023學(xué)年寧夏回族自治區(qū)中衛(wèi)市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第4頁
2022-2023學(xué)年寧夏回族自治區(qū)中衛(wèi)市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年寧夏回族自治區(qū)中衛(wèi)市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(20題)1.微分方程y''-2y=ex的特解形式應(yīng)設(shè)為()。A.y*=Aex

B.y*=Axex

C.y*=2ex

D.y*=ex

2.設(shè)().A.A.必定收斂B.必定發(fā)散C.收斂性與a有關(guān)D.上述三個結(jié)論都不正確

3.

4.控制工作的實質(zhì)是()

A.糾正偏差B.衡量成效C.信息反饋D.擬定標(biāo)準

5.

6.

7.

8.

9.

10.設(shè)f(x)=x3+x,則等于()。A.0

B.8

C.

D.

11.設(shè)函數(shù)y=f(x)二階可導(dǎo),且f(x)<0,f(x)<0,又△y=f(x+△x)-f(x),dy=f(x)△x,則當(dāng)△x>0時,有()A.△y>dy>0

B.△<dy<0

C.dy>Ay>0

D.dy<△y<0

12.

A.1

B.2

C.x2+y2

D.TL

13.A.0B.2C.2f(-1)D.2f(1)

14.

15.圖示懸臂梁,若已知截面B的撓度和轉(zhuǎn)角分別為vB和θB,則C端撓度為()。

A.vC=2uB

B.uC=θBα

C.vC=uB+θBα

D.vC=vB

16.當(dāng)x→0時,與x等價的無窮小量是

A.A.

B.ln(1+x)

C.C.

D.x2(x+1)

17.對于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時,下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex

B.y*=x(Ax+B)ex

C.y*=Ax3ex

D.y*=x2(Ax+B)ex

18.

A.

B.1

C.2

D.+∞

19.設(shè)y=3+sinx,則y=()A.-cosxB.cosxC.1-cosxD.1+cosx

20.

A.(-2,2)

B.(-∞,0)

C.(0,+∞)

D.(-∞,+∞)

二、填空題(20題)21.函數(shù)的間斷點為______.22.

23.

24.曲線y=(x+1)/(2x+1)的水平漸近線方程為_________.

25.

26.冪級數(shù)的收斂半徑為________。27.

28.曲線y=x/2x-1的水平漸近線方程為__________。

29.30.

31.設(shè)sinx為f(x)的原函數(shù),則f(x)=________。

32.

33.

34.

35.設(shè)y=-lnx/x,則dy=_________。

36.設(shè)z=sin(x2y),則=________。

37.

38.曲線y=x3-6x的拐點坐標(biāo)為______.39.

40.設(shè)sinx為f(x)的原函數(shù),則f(x)=______.

三、計算題(20題)41.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.42.

43.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達式;

(2)求S(x)的最大值.

44.

45.求微分方程y"-4y'+4y=e-2x的通解.

46.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?

47.求曲線在點(1,3)處的切線方程.48.將f(x)=e-2X展開為x的冪級數(shù).49.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.50.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.51.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.52.求微分方程的通解.53.54.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.55.

56.

57.

58.證明:59.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則60.四、解答題(10題)61.證明:當(dāng)時,sinx+tanx≥2x.

62.63.(本題滿分8分)64.已知f(x)在[a,b]上連續(xù)且f(a)=f(b),在(a,b)內(nèi)f''(x)存在,連接A(a,f(a)),B(b,f(b))兩點的直線交曲線y=f(x)于C(c,f(c))且a<c<b,試證在(a,b)內(nèi)至少有一點ξ使得f''(ξ)=0.

65.

66.

67.

68.

69.

70.

五、高等數(shù)學(xué)(0題)71.平面x+y一3z+1=0與平面2x+y+z=0相互關(guān)系是()。

A.斜交B.垂直C.平行D.重合六、解答題(0題)72.(本題滿分10分)設(shè)F(x)為f(x)的-個原函數(shù),且f(x)=xlnx,求F(x).

參考答案

1.A由方程知,其特征方程為,r2-2=0,有兩個特征根r=±.又自由項f(x)=ex,λ=1不是特征根,故特解y*可設(shè)為Aex.

2.D

3.A

4.A解析:控制工作的實質(zhì)是糾正偏差。

5.C

6.C

7.D

8.A

9.A

10.A本題考查的知識點為定積分的對稱性質(zhì)。由于所給定積分的積分區(qū)間為對稱區(qū)間,被積函數(shù)f(x)=x3+x為連續(xù)的奇函數(shù)。由定積分的對稱性質(zhì)可知

可知應(yīng)選A。

11.B

12.A

13.C本題考查了定積分的性質(zhì)的知識點。

14.C

15.C

16.B本題考查了等價無窮小量的知識點

17.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。

18.C

19.B

20.A21.本題考查的知識點為判定函數(shù)的間斷點.

僅當(dāng),即x=±1時,函數(shù)沒有定義,因此x=±1為函數(shù)的間斷點。

22.

23.-1

24.y=1/2本題考查了水平漸近線方程的知識點。

25.-2sin2-2sin2解析:26.因為級數(shù)為,所以用比值判別法有當(dāng)<1時收斂,即x2<2。收斂區(qū)間為,故收斂半徑R=。27.1.

本題考查的知識點為函數(shù)連續(xù)性的概念.

28.y=1/229.對已知等式兩端求導(dǎo),得

30.

31.0因為sinx為f(x)的一個原函數(shù),所以f(x)=(sinx)"=cosx,f"(x)=-sinx。

32.

33.34.1/2本題考查的知識點為極限的運算.

35.36.設(shè)u=x2y,則z=sinu,因此=cosu.x2=x2cos(x2y)。

37.38.(0,0)本題考查的知識點為求曲線的拐點.

依求曲線拐點的一般步驟,只需

(1)先求出y".

(2)令y"=0得出x1,…,xk.

(3)判定在點x1,x2,…,xk兩側(cè),y"的符號是否異號.若在xk的兩側(cè)y"異號,則點(xk,f(xk)為曲線y=f(x)的拐點.

y=x3-6x,

y'=3x2-6,y"=6x.

令y"=0,得到x=0.當(dāng)x=0時,y=0.

當(dāng)x<0時,y"<0;當(dāng)x>0時,y">0.因此點(0,0)為曲線y=x3-6x的拐點.

本題出現(xiàn)較多的錯誤為:填x=0.這個錯誤產(chǎn)生的原因是對曲線拐點的概念不清楚.拐點的定義是:連續(xù)曲線y=f(x)上的凸與凹的分界點稱之為曲線的拐點.其一般形式為(x0,f(x0)),這是應(yīng)該引起注意的,也就是當(dāng)判定y"在x0的兩側(cè)異號之后,再求出f(x0),則拐點為(x0,f(x0)).

注意極值點與拐點的不同之處!

39.

本題考查的知識點為定積分的換元法.

解法1

解法2

令t=1+x2,則dt=2xdx.

當(dāng)x=1時,t=2;當(dāng)x=2時,t=5.

這里的錯誤在于進行定積分變量替換,積分區(qū)間沒做變化.

40.cosxcosx解析:本題考查的知識點為原函數(shù)的概念.

由于sinx為f(x)的原函數(shù),因此f(x)=(sinx)'=cosx.

41.

42.

43.

44.

45.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

46.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時,價格上漲1%需求量減少2.5%47.曲線方程為,點(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

48.

49.

50.由二重積分物理意義知

51.函數(shù)的定義域為

注意

52.

53.

54.

列表:

說明

55.由一階線性微分方程通解公式有

56.

57.

58.

59.由等價無窮小量的定義可知

60.

61.

62.63.本題考查的知識點為定積分的換元積分法.

比較典型的錯誤是利用換元計算時,一些考生忘記將積分限也隨之變化.64.由題意知f(a)=f(b)=f(c),在(a,c)內(nèi)有一點η1,使得f'(η1)=0,在(c,6)內(nèi)有一點η2,使得f'(η2)=0,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論