版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年廣東省汕頭市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
2.過(guò)點(diǎn)(1,0,0),(0,1,0),(0,0,1)的平面方程為().
A.x+y+z=1
B.2x+y+z=1
C.x+2y+z=1
D.x+y+2z=1
3.
4.下列命題中正確的為
A.若x0為f(x)的極值點(diǎn),則必有f'(x0)=0
B.若f'(x)=0,則點(diǎn)x0必為f(x)的極值點(diǎn)
C.若f'(x0)≠0,則點(diǎn)x0必定不為f(x)的極值點(diǎn)
D.若f(x)在點(diǎn)x0處可導(dǎo),且點(diǎn)x0為f(x)的極值點(diǎn),則必有f'(x0)=0
5.設(shè)函數(shù)y=(2+x)3,則y'=
A.(2+x)2
B.3(2+x)2
C.(2+x)4
D.3(2+x)4
6.微分方程yy'=1的通解為A.A.y=x2+C
B.y2=x+C
C.1/2y2=Cx
D.1/2y2=x+C
7.設(shè)y=cos4x,則dy=()。A.4sin4xdxB.-4sin4xdxC.(1/4)sin4xdxD.-(1/4)sin4xdx
8.
9.設(shè)函數(shù)f(x)在[a,b]上連續(xù),且f(a)·f(b)<0,則必定存在一點(diǎn)ξ∈(a,b)使得()A.f(ξ)>0B.f(ξ)<0C.f(ξ)=0D.f(ξ)=0
10.
11.A.A.e2/3
B.e
C.e3/2
D.e6
12.A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.既非充分條件也非必要條件
13.
14.設(shè)有直線當(dāng)直線l1與l2平行時(shí),λ等于().
A.1B.0C.-1/2D.-115.A.A.
B.
C.
D.
16.A.
B.0
C.ln2
D.-ln2
17.點(diǎn)(-1,-2,-5)關(guān)于yOz平面的對(duì)稱點(diǎn)是()
A.(-1,2,-5)B.(-1,2,5)C.(1,2,5)D.(1,-2,-5)
18.
19.
20.
二、填空題(20題)21.
22.
23.
24.曲線y=x3+2x+3的拐點(diǎn)坐標(biāo)是_______。
25.26.二元函數(shù)z=x2+3xy+y2+2x,則=________。27.28.
29.設(shè)f(x)=sinx/2,則f'(0)=_________。
30.
31.設(shè)y=sin2x,則y'______.
32.
33.
34.過(guò)點(diǎn)(1,-1,0)且與直線平行的直線方程為_(kāi)_____。
35.
36.曲線f(x)=x/x+2的鉛直漸近線方程為_(kāi)_________。
37.38.
39.
40.
三、計(jì)算題(20題)41.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
42.43.證明:44.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).45.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
46.
47.
48.49.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.50.
51.求微分方程y"-4y'+4y=e-2x的通解.
52.求曲線在點(diǎn)(1,3)處的切線方程.53.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.54.求微分方程的通解.
55.
56.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).57.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
58.
59.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.60.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.四、解答題(10題)61.62.求
63.(本題滿分8分)
64.求通過(guò)點(diǎn)(1,2)的曲線方程,使此曲線在[1,x]上形成的曲邊梯形面積的值等于此曲線弧終點(diǎn)的橫坐標(biāo)x與縱坐標(biāo)y乘積的2倍減去4。
65.
66.設(shè)z=z(x,y)由ez-z+xy=3所確定,求dz。
67.
68.
69.
70.求微分方程y"+4y=e2x的通解。
五、高等數(shù)學(xué)(0題)71.設(shè)生產(chǎn)某產(chǎn)品利潤(rùn)L(x)=5000+x一0.0001x2百元[單位:件],問(wèn)生產(chǎn)多少件時(shí)利潤(rùn)最大,最大利潤(rùn)是多少?
六、解答題(0題)72.
參考答案
1.B解析:
2.A設(shè)所求平面方程為.由于點(diǎn)(1,0,0),(0,1,0),(0,0,1)都在平面上,將它們的坐標(biāo)分別代入所設(shè)平面方程,可得方程組
故選A.
3.D解析:
4.D解析:由極值的必要條件知D正確。
y=|x|在x=0處取得極值,但不可導(dǎo),知A與C不正確。
y=x3在x=0處導(dǎo)數(shù)為0,但x0=0不為它的極值點(diǎn),可知B不正確。因此選D。
5.B本題考查了復(fù)合函數(shù)求導(dǎo)的知識(shí)點(diǎn)。因?yàn)閥=(2+x)3,所以y'=3(2+x)2·(2+x)'=3(2+x)2.
6.D
7.B
8.B
9.D
10.B
11.D
12.B
13.C解析:
14.C解析:
15.D
16.A為初等函數(shù),定義區(qū)間為,點(diǎn)x=1在該定義區(qū)間內(nèi),因此
故選A.
17.D關(guān)于yOz平面對(duì)稱的兩點(diǎn)的橫坐標(biāo)互為相反數(shù),故選D。
18.D
19.C解析:
20.D21.1/6
22.(02)(0,2)解析:
23.
24.(03)25.2.
本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.
能利用洛必達(dá)法則求解.
如果計(jì)算極限,應(yīng)該先判定其類型,再選擇計(jì)算方法.當(dāng)所求極限為分式時(shí):
若分子與分母的極限都存在,且分母的極限不為零,則可以利用極限的商的運(yùn)算法則求極限.
若分子與分母的極限都存在,但是分子的極限不為零,而分母的極限為零,則所求極限為無(wú)窮大量.
檢查是否滿足洛必達(dá)法則的其他條件,是否可以進(jìn)行等價(jià)無(wú)窮小量代換,所求極限的分子或分母是否有非零因子,可以單獨(dú)進(jìn)行極限運(yùn)算等.26.因?yàn)閦=x2+3xy+y2+2x,27.2本題考查的知識(shí)點(diǎn)為二重積分的幾何意義.
由二重積分的幾何意義可知,所給二重積分的值等于長(zhǎng)為1,寬為2的矩形的面積值,故為2.或由二重積分計(jì)算可知
28.
29.1/2
30.-2sin2-2sin2解析:31.2sinxcosx本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)導(dǎo)數(shù)運(yùn)算.
32.
33.(12)(01)34.本題考查的知識(shí)點(diǎn)為直線的方程和直線與直線的關(guān)系。由于兩條直線平行的充分必要條件為它們的方向向量平行,因此可取所求直線的方向向量為(2,1,-1).由直線的點(diǎn)向式方程可知所求直線方程為
35.11解析:
36.x=-2
37.0本題考查了利用極坐標(biāo)求二重積分的知識(shí)點(diǎn).
38.e-2本題考查了函數(shù)的極限的知識(shí)點(diǎn),
39.11解析:
40.(00)
41.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
42.
43.
44.
列表:
說(shuō)明
45.由等價(jià)無(wú)窮小量的定義可知
46.
47.
則
48.
49.
50.
51.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
52.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
53.
54.
55.
56.
57.
58.由一階線性微分方程通解公式有
59.函數(shù)的定義域?yàn)?/p>
注意
60.由二重積分物理意義知
61.(11/3)(1,1/3)解析:
62.
63.本題考查的知識(shí)點(diǎn)為求解-階線性微分方程.
所給方程為-階線性微分方程
64.
65.
66.
67.
68.
69.
70.
71.L(x)=5000+x一0.0001x2L"(x)=1—0.0002x=0:x=5000;
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 紡絲凝固浴液配制工崗前創(chuàng)新思維考核試卷含答案
- 輕冶料漿配料工操作知識(shí)強(qiáng)化考核試卷含答案
- 信息通信網(wǎng)絡(luò)測(cè)量員崗前班組安全考核試卷含答案
- 2025年聚氨酯泡沫穩(wěn)定劑合作協(xié)議書(shū)
- 2025年輸液輸血類產(chǎn)品項(xiàng)目合作計(jì)劃書(shū)
- 2025年娛樂(lè)、游覽用船舶項(xiàng)目合作計(jì)劃書(shū)
- 2025年玉米免耕播種機(jī)項(xiàng)目發(fā)展計(jì)劃
- 2026年生態(tài)價(jià)值銀行項(xiàng)目建議書(shū)
- 2025年山東省菏澤市中考生物真題卷含答案解析
- 心電圖實(shí)時(shí)處理算法試題及答案
- 2026年榆能集團(tuán)陜西精益化工有限公司招聘?jìng)淇碱}庫(kù)完整答案詳解
- 2026廣東省環(huán)境科學(xué)研究院招聘專業(yè)技術(shù)人員16人筆試參考題庫(kù)及答案解析
- 邊坡支護(hù)安全監(jiān)理實(shí)施細(xì)則范文(3篇)
- 6.1.3化學(xué)反應(yīng)速率與反應(yīng)限度(第3課時(shí) 化學(xué)反應(yīng)的限度) 課件 高中化學(xué)新蘇教版必修第二冊(cè)(2022-2023學(xué)年)
- 北京市西城區(qū)第8中學(xué)2026屆生物高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題含解析
- 廣東高中高考英語(yǔ)聽(tīng)說(shuō)考試故事速記復(fù)述技巧
- GB/T 32065.5-2015海洋儀器環(huán)境試驗(yàn)方法第5部分:高溫貯存試驗(yàn)
- GB/T 20033.3-2006人工材料體育場(chǎng)地使用要求及檢驗(yàn)方法第3部分:足球場(chǎng)地人造草面層
- 2023年牡丹江市林業(yè)系統(tǒng)事業(yè)單位招聘筆試模擬試題及答案解析
- 數(shù)字電子技術(shù)說(shuō)課課件
- 天然氣加氣站安全事故的案例培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論