2023屆江蘇省廟頭中學(xué)九年級數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第1頁
2023屆江蘇省廟頭中學(xué)九年級數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第2頁
2023屆江蘇省廟頭中學(xué)九年級數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第3頁
2023屆江蘇省廟頭中學(xué)九年級數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第4頁
2023屆江蘇省廟頭中學(xué)九年級數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.點點同學(xué)對數(shù)據(jù)25,43,28,2□,43,36,52進行統(tǒng)計分析,發(fā)現(xiàn)其中一個兩位數(shù)的個位數(shù)被墨水涂污看不到了,則計算結(jié)果與涂污數(shù)字無關(guān)的是()A.平均數(shù) B.中位數(shù) C.方差 D.眾數(shù)2.過反比例函數(shù)圖象上一點作兩坐標(biāo)軸的垂線段,則它們與兩坐標(biāo)軸圍成的四邊形面積為()A.-6 B.-3 C.3 D.63.已知關(guān)于軸對稱點為,則點的坐標(biāo)為()A. B. C. D.4.已知,那么下列等式中,不一定正確的是()A. B. C. D.5.將拋物線向上平移兩個單位長度,再向右平移一個單位長度后,得到的拋物線解析式是()A. B. C. D.6.已知x=2是一元二次方程x2+mx+2=0的一個解,則m的值是()A.﹣3 B.3 C.0 D.0或37.如圖,方格紙中4個小正方形的邊長均為2,則圖中陰影部分三個小扇形的面積和為()A. B. C. D.8.用配方法解方程x2+2x﹣5=0時,原方程應(yīng)變形為()A.(x﹣1)2=6 B.(x+1)2=6 C.(x+2)2=9 D.(x﹣2)2=99.已知拋物線在平面直角坐標(biāo)系中的位置如圖所示,則下列結(jié)論中,正確的是()A. B. C. D.10.拋物線y=ax2+bx+c的頂點為D(﹣1,2),與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖所示,則以下結(jié)論:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c=0有兩個相等的實數(shù)根.其中正確結(jié)論的個數(shù)為()A.1個 B.2個 C.3個 D.4個11.一元二次方程x2+4x=5配方后可變形為()A.(x+2)2=5 B.(x+2)2=9 C.(x﹣2)2=9 D.(x﹣2)2=2112.已知圓錐的底面半徑為5,母線長為13,則這個圓錐的全面積是()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,在中,.動點以每秒個單位的速度從點開始向點移動,直線從與重合的位置開始,以相同的速度沿方向平行移動,且分別與邊交于兩點,點與直線同時出發(fā),設(shè)運動的時間為秒,當(dāng)點移動到與點重合時,點和直線同時停止運動.在移動過程中,將繞點逆時針旋轉(zhuǎn),使得點的對應(yīng)點落在直線上,點的對應(yīng)點記為點,連接,當(dāng)時,的值為___________.14.如圖,拋物線y=ax2與直線y=bx+c的兩個交點坐標(biāo)分別為A(-2,4),B(1,1),則不等式ax2>bx+c的解集是_________.15.已知四條線段a、2、6、a+1成比例,則a的值為_____.16.已知,則的值是_____.17.拋物線y=(x﹣1)2﹣2與y軸的交點坐標(biāo)是_____.18.已知∽,若周長比為4:9,則_____________.三、解答題(共78分)19.(8分)某區(qū)各街道居民積極響應(yīng)“創(chuàng)文明社區(qū)”活動,據(jù)了解,某街道居民人口共有7.5萬人,街道劃分為A,B兩個社區(qū),B社區(qū)居民人口數(shù)量不超過A社區(qū)居民人口數(shù)量的2倍.(1)求A社區(qū)居民人口至少有多少萬人?(2)街道工作人員調(diào)查A,B兩個社區(qū)居民對“社會主義核心價值觀”知曉情況發(fā)現(xiàn):A社區(qū)有1.2萬人知曉,B社區(qū)有1萬人知曉,為了提高知曉率,街道工作人員用了兩個月的時間加強宣傳,A社區(qū)的知曉人數(shù)平均月增長率為m%,B社區(qū)的知曉人數(shù)第一個月增長了m%,第二個月增長了2m%,兩個月后,街道居民的知曉率達(dá)到76%,求m的值.20.(8分)如圖,已知方格紙中的每個小方格都是相同的正方形(邊長為1),方格紙上有一個角∠AOB,A,O,B均為格點,請回答問題并只用無刻度直尺和鉛筆,完成下列作圖并簡要說明畫法:(1)OA=_____,(2)作出∠AOB的平分線并在其上標(biāo)出一個點Q,使.21.(8分)在Rt△ABC中,∠C=90°,∠B=60°,a=2.求b和c.22.(10分)如圖所示,已知二次函數(shù)y=-x2+bx+c的圖像與x軸的交點為點A(3,0)和點B,與y軸交于點C(0,3),連接AC.(1)求這個二次函數(shù)的解析式;(2)在(1)中位于第一象限內(nèi)的拋物線上是否存在點D,使得△ACD的面積最大?若存在,求出點D的坐標(biāo)及△ACD面積的最大值,若不存在,請說明理由.(3)在拋物線上是否存在點E,使得△ACE是以AC為直角邊的直角三角形如果存在,請直接寫出點E的坐標(biāo)即可;如果不存在,請說明理由.23.(10分)已知二次函數(shù)y=(x-m)(x+m+4),其中m為常數(shù).(1)求證:不論m為何值,該二次函數(shù)的圖像與x軸有公共點.(2)若A(-1,a)和B(n,b)是該二次函數(shù)圖像上的兩個點,請判斷a、b的大小關(guān)系.24.(10分)如圖,某防洪堤壩長300米,其背水坡的坡角∠ABC=62°,坡面長度AB=25米(圖為橫截面),為了使堤壩更加牢固,一施工隊欲改變堤壩的坡面,使得加固后坡面的坡角∠ADB=50°(1)求此時應(yīng)將壩底向外拓寬多少米?(結(jié)果保留到0.01米)(2)完成這項工程需要土石多少立方米?(參考數(shù)據(jù):sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)25.(12分)如圖,是的直徑,弦于點;點是延長線上一點,,.(1)求證:是的切線;(2)取的中點,連接,若的半徑為2,求的長.26.某手機店銷售部型和部型手機的利潤為元,銷售部型和部型手機的利潤為元.(1)求每部型手機和型手機的銷售利潤;(2)該手機店計劃一次購進,兩種型號的手機共部,其中型手機的進貨量不超過型手機的倍,設(shè)購進型手機部,這部手機的銷售總利潤為元.①求關(guān)于的函數(shù)關(guān)系式;②該手機店購進型、型手機各多少部,才能使銷售總利潤最大?(3)在(2)的條件下,該手機店實際進貨時,廠家對型手機出廠價下調(diào)元,且限定手機店最多購進型手機部,若手機店保持同種手機的售價不變,設(shè)計出使這部手機銷售總利潤最大的進貨方案.

參考答案一、選擇題(每題4分,共48分)1、B【分析】利用平均數(shù)、中位數(shù)、方差和標(biāo)準(zhǔn)差的定義對各選項進行判斷.【詳解】這組數(shù)據(jù)的平均數(shù)、方差和標(biāo)準(zhǔn)差都與第4個數(shù)有關(guān),而這組數(shù)據(jù)從小到大排序后,位于中間位置的數(shù)是36,與十位數(shù)字是2個位數(shù)字未知的兩位數(shù)無關(guān),∴計算結(jié)果與涂污數(shù)字無關(guān)的是中位數(shù).故選:B.【點睛】本題考查了標(biāo)準(zhǔn)差:樣本方差的算術(shù)平方根表示樣本的標(biāo)準(zhǔn)差,它也描述了數(shù)據(jù)對平均數(shù)的離散程度.也考查了中位數(shù)、平均數(shù).2、D【分析】根據(jù)反比例函數(shù)的幾何意義可知,矩形的面積為即為比例系數(shù)k的絕對值,即可得出答案.【詳解】設(shè)B點坐標(biāo)為(x,y),由函數(shù)解析式可知,xy=k=-6,則可知S矩形ABCO=|xy|=|k|=6,故選:D.【點睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義,關(guān)鍵是理解圖中矩形的面積為即為比例系數(shù)k的絕對值.3、D【分析】利用關(guān)于x軸對稱的點坐標(biāo)的特點即可解答.【詳解】解:∵關(guān)于軸對稱點為∴的坐標(biāo)為(-3,-2)故答案為D.【點睛】本題考查了關(guān)于x軸對稱的點坐標(biāo)的特點,即識記關(guān)于x軸對稱的點坐標(biāo)的特點是橫坐標(biāo)不變,縱坐標(biāo)變?yōu)橄喾磾?shù).4、B【分析】根據(jù)比例的性質(zhì)作答.【詳解】A、由比例的性質(zhì)得到3y=5x,故本選項不符合題意.

B、根據(jù)比例的性質(zhì)得到x+y=8k(k是正整數(shù)),故本選項符合題意.

C、根據(jù)合比性質(zhì)得到,故本選項不符合題意.

D、根據(jù)等比性質(zhì)得到,故本選項不符合題意.

故選:B.【點睛】此題考查了比例的性質(zhì),解題關(guān)鍵在于需要掌握內(nèi)項之積等于外項之積、合比性質(zhì)和等比性質(zhì).5、D【分析】由平移可知,拋物線的開口方向和大小不變,頂點改變,將拋物線化為頂點式,求出頂點,再由平移求出新的頂點,然后根據(jù)頂點式寫出平移后的拋物線解析式.【詳解】解:,即拋物線的頂點坐標(biāo)為,把點向上平移2個單位長度,再向右平移1個單位長度得到點的坐標(biāo)為,所以平移后得到的拋物線解析式為.故選D.【點睛】本題考查了二次函數(shù)圖象與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通??衫脙煞N方法:一是求出原拋物線上任意兩點平移后的坐標(biāo),利用待定系數(shù)法求出解析式;二是只考慮平移后的頂點坐標(biāo),即可求出解析式.6、A【分析】直接把x=2代入已知方程就得到關(guān)于m的方程,再解此方程即可.【詳解】解:∵x=2是一元二次方程x2+mx+2=0的一個解,∴4+2m+2=0,∴m=﹣1.故選:A.【點睛】本題考查的是一元二次方程的解,難度系數(shù)較低,直接把解代入方程即可.7、D【分析】根據(jù)直角三角形的兩銳角互余求出∠1+∠2=90°,再根據(jù)正方形的對角線平分一組對角求出∠3=45°,然后根據(jù)扇形面積公式列式計算即可得解.【詳解】解:由圖可知,∠1+∠2=90°,∠3=45°,

∵正方形的邊長均為2,

∴陰影部分的面積=.

故選:D.【點睛】本題考查了中心對稱,觀察圖形,根據(jù)正方形的性質(zhì)與直角三角形的性質(zhì)求出陰影部分的圓心角是解題的關(guān)鍵.8、B【解析】x2+2x﹣5=0,x2+2x=5,x2+2x+1=5+1,(x+1)2=6,故選B.9、D【解析】試題分析:由拋物線開口向上可知a>0,故A錯誤;由對稱軸在軸右側(cè),可知a、b異號,所以b<0,故B錯誤;由圖象知當(dāng)x=1時,函數(shù)值y小于0,即a+b+c<0,故C錯誤;由圖象知當(dāng)x=-2時,函數(shù)值y大于0,即4a-2b+c>0,故D正確;故選D考點:二次函數(shù)中和符號10、B【分析】先從二次函數(shù)圖像獲取信息,運用二次函數(shù)的性質(zhì)一—判斷即可.【詳解】解:∵二次函數(shù)與x軸有兩個交點,∴b2-4ac>0,故①錯誤;∵拋物線與x軸的另一個交點為在(0,0)和(1,0)之間,且拋物線開口向下,∴當(dāng)x=1時,有y=a+b+c<0,故②正確;∵函數(shù)圖像的頂點為(-1,2)∴a-b+c=2,又∵由函數(shù)的對稱軸為x=-1,∴=-1,即b=2a∴a-b+c=a-2a+c=c-a=2,故③正確;由①得b2-4ac>0,則ax2+bx+c=0有兩個不等的實數(shù)根,故④錯誤;綜上,正確的有兩個.故選:B.【點睛】本題考查了二次函數(shù)的圖像與系數(shù)的關(guān)系,從二次函數(shù)圖像上獲取有用信息和靈活運用數(shù)形結(jié)合思想是解答本題的關(guān)鍵.11、B【分析】兩邊配上一次項系數(shù)一半的平方可得.【詳解】∵x2+4x=5,∴x2+4x+4=5+4,即(x+2)2=9,故選B.【點睛】本題主要考查解一元二次方程的基本技能,熟練掌握解一元二次方程的常用方法和根據(jù)不同方程靈活選擇方法是解題的關(guān)鍵.12、B【分析】先根據(jù)圓錐側(cè)面積公式:求出圓錐的側(cè)面積,再加上底面積即得答案.【詳解】解:圓錐的側(cè)面積=,所以這個圓錐的全面積=.故選:B.【點睛】本題考查了圓錐的有關(guān)計算,屬于基礎(chǔ)題型,熟練掌握圓錐側(cè)面積的計算公式是解答的關(guān)鍵.二、填空題(每題4分,共24分)13、【分析】由題意得CP=10-3t,EC=3t,BE=16-3t,又EF//AC可得△ABC∽△FEB,進而求得EF的長;如圖,由點P的對應(yīng)點M落在EF上,點F的對應(yīng)點為點N,可知∠PEF=∠MEN,由EF//AC∠C=90°可以得出∠PEC=∠NEG,又由,就有∠CBN=∠CEP.可以得出∠CEP=∠NEP=∠B,過N做NG⊥BC,可得EN=BN,最后利用三角函數(shù)的關(guān)系建立方程求解即可;【詳解】解:設(shè)運動的時間為秒時;由題意得:CP=10-3t,EC=3t,BE=16-3t∵EF//AC∴△ABC∽△FEB∴∴∴EF=在Rt△PCE中,PE=如圖:過N做NG⊥BC,垂足為G∵將繞點逆時針旋轉(zhuǎn),使得點的對應(yīng)點落在直線上,點的對應(yīng)點記為點,∴∠PEF=∠MEN,EF=EN,又∵EF//AC∴∠C=∠CEF=∠MEB=90°∴∠PEC=∠NEG又∵∴∠CBN=∠CEP.∴∠CBN=∠NEG∵NG⊥BC∴NB=EN,BG=∴NB=EN=EF=∵∠CBN=∠NEG,∠C=NGB=90°∴△PCE∽△NGB∴∴=,解得t=或-(舍)故答案為.【點睛】本題考查了相似三角形的判定及性質(zhì)的運用、三角函數(shù)值的運用、勾股定理的運用,靈活利用相似三角形的性質(zhì)和勾股定理是解答本題的關(guān)鍵.14、x<-2或x>1【分析】根據(jù)圖形拋物線與直線的兩個交點情況可知,不等式的解集為拋物線的圖象在直線圖象的上方對應(yīng)的自變量的取值范圍.【詳解】如圖所示:

∵拋物線與直線的兩個交點坐標(biāo)分別為,

∴二次函數(shù)圖象在一次函數(shù)圖象上方時,即不等式的解集為:或.

故答案為:或.【點睛】本題主要考查了二次函數(shù)與不等式組.解答此題時,利用了圖象上的點的坐標(biāo)特征來解不等式.15、3【分析】由四條線段a、2、6、a+1成比例,根據(jù)成比例線段的定義,即可得=,即可求得a的值.【詳解】解:∵四條線段a、2、6、a+1成比例,∴=,∵a(a+1)=12,解得:a1=3,a2=-4(不符合題意,舍去).故答案為3.【點睛】本題考查了線段成比例的定義:若四條線段a,b,c,d成比例,則有a:b=c:d.16、【解析】因為已知,所以可以設(shè):a=2k,則b=3k,將其代入分式即可求解.【詳解】∵,∴設(shè)a=2k,則b=3k,∴.故答案為.【點睛】本題考查分式的基本性質(zhì).17、(0,﹣1)【解析】將x=0代入y=(x﹣1)2﹣2,計算即可求得拋物線與y軸的交點坐標(biāo).【詳解】解:將x=0代入y=(x﹣1)2﹣2,得y=﹣1,所以拋物線與y軸的交點坐標(biāo)是(0,﹣1).故答案為:(0,﹣1).【點睛】本題考查了二次函數(shù)圖象上點的坐標(biāo)特征,根據(jù)y軸上點的橫坐標(biāo)為0求出交點的縱坐標(biāo)是解題的關(guān)鍵.18、4:1【分析】根據(jù)相似三角形周長的比等于相似比解答即可.【詳解】∵△ABC∽△DEF,∴.故答案為:4:1.【點睛】本題考查了相似三角形的性質(zhì),牢記相似三角形(多邊形)的周長的比等于相似比是解題的關(guān)鍵.三、解答題(共78分)19、(1)A社區(qū)居民人口至少有2.1萬人;(2)10.【分析】(1)設(shè)A社區(qū)居民人口有x萬人,根據(jù)“B社區(qū)居民人口數(shù)量不超過A社區(qū)居民人口數(shù)量的2倍”列出不等式求解即可;

(2)A社區(qū)的知曉人數(shù)+B社區(qū)的知曉人數(shù)=7.1×76%,據(jù)此列出關(guān)于m的方程并解答.【詳解】解:(1)設(shè)A社區(qū)居民人口有x萬人,則B社區(qū)有(7.1?x)萬人,

依題意得:7.1?x≤2x,

解得x≥2.1.

即A社區(qū)居民人口至少有2.1萬人;

(2)依題意得:1.2(1+m%)2+1×(1+m%)×(1+2m%)=7.1×76%,

設(shè)m%=a,方程可化為:1.2(1+a)2+(1+a)(1+2a)=1.7,

化簡得:32a2+14a?31=0,

解得a=0.1或a=?(舍),

∴m=10,

答:m的值為10.【點睛】本題考查了一元二次方程和一元一次不等式的應(yīng)用,解題的關(guān)鍵是讀懂題意,找到題中相關(guān)數(shù)據(jù)的數(shù)量關(guān)系,列出不等式或方程.20、5【解析】(1)依據(jù)勾股定理即可得到OA的長;(2)取格點C,D,連接AB,CD,交于點P,作射線OP即為∠AOB的角平分線;取格點E,F(xiàn),G,連接FE,交OP于Q,則點Q即為所求.【詳解】解:(1)由勾股定理,可得AO==5,故答案為5;(2)如圖,取格點C,D,連接AB,CD,交于點P,作射線OP即為∠AOB的角平分線;如圖,取格點E,F(xiàn),G,連接FE,交OP于Q,則點Q即為所求.理由:由勾股定理可得OG=2,由△FQG∽△EQO,可得=,∴OQ=OG=.【點睛】本題考查作圖﹣復(fù)雜作圖、角平分線的性質(zhì)等知識,解題的關(guān)鍵是熟練掌握等腰三角形的性質(zhì)的應(yīng)用,角平分線的性質(zhì)的應(yīng)用,勾股定理以及相似三角形的性質(zhì).21、【分析】根據(jù)題意畫出圖形,結(jié)合銳角三角函數(shù)的定義選擇合適的函數(shù)即可?!驹斀狻俊摺螧=60°,a=2【點睛】本題考查解直角三角形,根據(jù)已知條件選擇合適的三角函數(shù)是解題的關(guān)鍵。22、(1)y=-x2+2x+1;(2)拋物線上存在點D,使得△ACD的面積最大,此時點D的坐標(biāo)為(,)且△ACD面積的最大值;(1)在拋物線上存在點E,使得△ACE是以AC為直角邊的直角三角形點E的坐標(biāo)是(1,4)或(-2,-5).【分析】(1)因為點A(1,0),點C(0,1)在拋物線y=?x2+bx+c上,可代入確定b、c的值;(2)過點D作DH⊥x軸,設(shè)D(t,-t2+2t+1),先利用圖象上點的特征表示出S△ACD=S梯形OCDH+S△AHD-S△AOC=,再利用頂點坐標(biāo)求最值即可;(1)分兩種情況討論:①過點A作AE1⊥AC,交拋物線于點E1,交y軸于點F,連接E1C,求出點F的坐標(biāo),再求直線AE的解析式為y=x?1,再與二次函數(shù)的解析式聯(lián)立方程組求解即可;②過點C作CE⊥CA,交拋物線于點E2、交x軸于點M,連接AE2,求出直線CM的解析式為y=x+1,再與二次函數(shù)的解析式聯(lián)立方程組求解即可.【詳解】(1)解:∵二次函數(shù)y=-x2+bx+c與x軸的交點為點A(1,0)與y軸交于點C(0,1)∴解之得∴這個二次函數(shù)的解析式為y=-x2+2x+1(2)解:如圖,設(shè)D(t,-t2+2t+1),過點D作DH⊥x軸,垂足為H,則S△ACD=S梯形OCDH+S△AHD-S△AOC=(-t2+2t+1+1)+(1-t)(-t2+2t+1)-×1×1==∵<0∴當(dāng)t=時,△ACD的面積有最大值此時-t2+2t+1=∴拋物線上存在點D,使得△ACD的面積最大,此時點D的坐標(biāo)為(,)且△ACD面積的最大值(1)在拋物線上存在點E,使得△ACE是以AC為直角邊的直角三角形點E的坐標(biāo)是(1,4)或(-2,-5).理由如下:有兩種情況:①如圖,過點A作AE1⊥AC,交拋物線于點E1、交y軸于點F,連接E1C.∵CO=AO=1,∴∠CAO=45°,∴∠FAO=45°,AO=OF=1.∴點F的坐標(biāo)為(0,?1).設(shè)直線AE的解析式為y=kx+b,將(0,?1),(1,0)代入y=kx+b得:解得∴直線AE的解析式為y=x?1,由解得或∴點E1的坐標(biāo)為(?2,?5).②如圖,過點C作CE⊥CA,交拋物線于點E2、交x軸于點M,連接AE2.∵∠CAO=45°,∴∠CMA=45°,OM=OC=1.∴點M的坐標(biāo)為(?1,0),設(shè)直線CM的解析式為y=kx+b,將(0,1),(-1,0)代入y=kx+b得:解得∴直線CM的解析式為y=x+1.由解得:或∴點E2的坐標(biāo)為(1,4).綜上,在拋物線上存在點E1(?2,?5)、E2(1,4),使△ACE1、△ACE2是以AC為直角邊的直角三角形.【點睛】本題考查了用待定系數(shù)法求二次函數(shù)解析式、二次函數(shù)的最值問題,二次函數(shù)中的直角三角形問題.觀察圖象、求出特殊點坐標(biāo)是解題的關(guān)鍵.23、(1)見解析;(2)①當(dāng)n=-3時,a=b;②當(dāng)-3<n<-1時,a>b;③當(dāng)n<-3或n>-1時,a<b【分析】(1)方法一:當(dāng)y=0時,(x-m)(x-m-1)=0,解得x1=m,x2=-m-1,即可得到結(jié)論;方法二:化簡得y=x2+1x-m2-1m,令y=0,可得b2-1ac≥0,即可證明;(2)得出函數(shù)圖象的對稱軸,根據(jù)開口方向和函數(shù)的增減性分三種情況討論,判斷a與b的大小.【詳解】(1)方法一:令y=0,(x-m)(x+m+1)=0,解得x1=m;x2=-m-1.當(dāng)m=-m-1,即m=-2,方程有兩個相等的實數(shù)根,故二次函數(shù)與x軸有一個公共點;當(dāng)m≠-m-1,即m≠-2,方程有兩個不相等的實數(shù)根,故二次函數(shù)與x軸有兩個公共點.綜上不論m為何值,該二次函數(shù)的圖像與x軸有公共點.方法二:化簡得y=x2+1x-m2-1m.令y=0,b2-1ac=1m2+16m+16=1(m+2)2≥0,方程有兩個實數(shù)根.∴不論m為何值,該二次函數(shù)的圖像與x軸有公共點.(2)由題意知,函數(shù)的圖像的對稱軸為直線x=-2①當(dāng)n=-3時,a=b;②當(dāng)-3<n<-1時,a>b③當(dāng)n<-3或n>-1時,a<b【點睛】本題考查了二次函數(shù)的性質(zhì)以及與方程的關(guān)系,把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標(biāo)問題轉(zhuǎn)化為解關(guān)于x的一元二次方程,并且注意分情況討論.24、(1)應(yīng)將壩底向外拓寬大約6.58米;(2)21714立方米【分析】(1)過A點作AE⊥CD于E.在Rt△ABE中,根據(jù)三角函數(shù)可得AE,BE,在Rt△ADE中,根據(jù)三角函數(shù)可得DE,再根據(jù)DB=DE-BE即可求解;(2)用△ABD的面積乘以壩長即為所需的土石的體積.【詳解】解:(1)過A點作AE⊥CD于E.在Rt△ABE中,∠ABE=62°.∴AE=AB?sin62°≈25×0.88=22米,BE=AB?cos62°≈25×0.47=11.75米,在Rt△ADE中,∠ADB=50°,∴DE==18.33米,∴DB=DE-BE≈6.58米.故此時應(yīng)將壩底向外拓寬大約6.58米.(2)6.58×22××300=21714立方米.【點睛】本題考查了解直角三角形的應(yīng)用-坡度坡角問題,兩個直角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論