-度第一期海南省靈山中學2022-2023學年數(shù)學九上期末調(diào)研試題含解析_第1頁
-度第一期海南省靈山中學2022-2023學年數(shù)學九上期末調(diào)研試題含解析_第2頁
-度第一期海南省靈山中學2022-2023學年數(shù)學九上期末調(diào)研試題含解析_第3頁
-度第一期海南省靈山中學2022-2023學年數(shù)學九上期末調(diào)研試題含解析_第4頁
-度第一期海南省靈山中學2022-2023學年數(shù)學九上期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.下列方程中是一元二次方程的是()A. B. C. D.2.在Rt△ABC中,∠C=90°,AC=3,BC=4,那么cosA的值是()A. B. C. D.3.如圖①,在矩形中,,對角線相交于點,動點由點出發(fā),沿向點運動.設點的運動路程為,的面積為,與的函數(shù)關系圖象如圖②所示,則邊的長為().A.3 B.4 C.5 D.64.已知反比例函數(shù)y=(k>0)的圖象經(jīng)過點A(1,a)、B(3,b),則a與b的關系正確的是()A.a(chǎn)=b B.a(chǎn)=﹣b C.a(chǎn)<b D.a(chǎn)>b5.在Rt△ABC中,∠C=90°,、、所對的邊分別為a、b、c,如果a=3b,那么∠A的余切值為()A. B.3 C. D.6.如圖,AD是的一條角平分線,點E在AD上.若,,則與的面積比為()A.1:5 B.5:1 C.3:20 D.20:37.如圖,已知△ABC,AB<BC,用尺規(guī)作圖的方法在BC上取一點P,使得PA+PC=BC,則下列選項正確的是()A. B. C. D.8.已知圓心O到直線l的距離為d,⊙O的半徑r=6,若d是方程x2–x–6=0的一個根,則直線l與圓O的位置關系為()A.相切 B.相交C.相離 D.不能確定9.如圖,在△ABC中,D、E分別為AB、AC邊上的點,DE∥BC,BE與CD相交于點F,則下列結論一定正確的是()A. B. C. D.10.如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,若∠BAC=20°,則∠ADC的度數(shù)是()A.90° B.100° C.110° D.130°二、填空題(每小題3分,共24分)11.如圖,為的弦,的半徑為5,于點,交于點,且,則弦的長是_____.12.函數(shù)y=x2﹣4x+3的圖象與y軸交點的坐標為_____.13.已知二次函數(shù)y=(x-2)2+3,當x_______________時,y14.如圖,直線,若,則的值為_________15.若m是關于x的方程x2-2x-3=0的解,則代數(shù)式4m-2m2+2的值是______.16.如果方程x2-4x+3=0的兩個根分別是Rt△ABC的兩條邊,△ABC最小的角為A,那么tanA的值為_______.17.如果兩個相似三角形的面積的比是4:9,那么它們對應的角平分線的比是_____.18.已知△ABC與△DEF相似,且△ABC與△DEF的相似比為2:3,若△DEF的面積為36,則△ABC的面積等于________.三、解答題(共66分)19.(10分)已知關于的方程(1)判斷方程根的情況(2)若兩根異號,且正根的絕對值較大,求整數(shù)的值.20.(6分)如圖,四邊形OABC為矩形,OA=4,OC=5,正比例函數(shù)y=2x的圖像交AB于點D,連接DC,動點Q從D點出發(fā)沿DC向終點C運動,動點P從C點出發(fā)沿CO向終點O運動.兩點同時出發(fā),速度均為每秒1個單位,設從出發(fā)起運動了ts.(1)求點D的坐標;(2)若PQ∥OD,求此時t的值?(3)是否存在時刻某個t,使S△DOP=S△PCQ?若存在,請求出t的值,若不存在,請說明理由;(4)當t為何值時,△DPQ是以DQ為腰的等腰三角形?21.(6分)如圖所示,AD,BE是鈍角△ABC的邊BC,AC上的高,求證:.22.(8分)已知拋物線y=x2﹣bx+2b(b是常數(shù)).(1)無論b取何值,該拋物線都經(jīng)過定點D.請寫出點D的坐標.(2)該拋物線的頂點是(m,n),當b取不同的值時,求n關于m的函數(shù)解析式.(3)若在0≤x≤4的范圍內(nèi),至少存在一個x的值,使y<0,求b的取值范圍.23.(8分)如圖,已知反比例函數(shù)(k1>0)與一次函數(shù)相交于A、B兩點,AC⊥x軸于點C.若△OAC的面積為1,且tan∠AOC=2.(1)求出反比例函數(shù)與一次函數(shù)的解析式;(2)請直接寫出B點的坐標,并指出當x為何值時,反比例函數(shù)y1的值大于一次函數(shù)y2的值.24.(8分)如圖1,直線y=x與雙曲線y=交于A,B兩點,根據(jù)中心對稱性可以得知OA=OB.(1)如圖2,直線y=2x+1與雙曲線y=交于A,B兩點,與坐標軸交點C,D兩點,試證明:AC=BD;(2)如圖3,直線y=ax+b與雙曲線y=交于A,B兩點,與坐標軸交點C,D兩點,試問:AC=BD還成立嗎?(3)如果直線y=x+3與雙曲線y=交于A,B兩點,與坐標軸交點C,D兩點,若DB+DC≤5,求出k的取值范圍.25.(10分)如圖,點D,E分別是不等邊△ABC(即AB,BC,AC互不相等)的邊AB,AC的中點.點O是△ABC所在平面上的動點,連接OB,OC,點G,F(xiàn)分別是OB,OC的中點,順次連接點D,G,F(xiàn),E.(1)如圖,當點O在△ABC的內(nèi)部時,求證:四邊形DGFE是平行四邊形;(2)若四邊形DGFE是菱形,則OA與BC應滿足怎樣的數(shù)量關系?(直接寫出答案,不需要說明理由)26.(10分)在平面直角坐標系中,的頂點分別為、、.(1)將繞點順時針旋轉得到,畫圖并寫出點的坐標.(2)作出關于中心對稱圖形.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據(jù)一元二次方程的定義依次判斷后即可解答.【詳解】選項A,是一元一次方程,不是一元二次方程;選項B,是二元二次方程,不是一元二次方程;選項C,是一元二次方程;選項D,是分式方程,不是一元二次方程.故選C.【點睛】本題考查了一元二次方程的定義,熟知只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)為2的整式方程叫一元二次方程是解決問題的關鍵.2、B【解析】根據(jù)勾股定理,可得AB的長,根據(jù)銳角的余弦等于鄰邊比斜邊,可得答案.【詳解】解:在Rt△ABC中,∠C=90°,AC=3,BC=4,

由勾股定理,得AB==5cosA==故選:B.【點睛】本題考查銳角三角函數(shù)的定義,在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.3、B【分析】當點在上運動時,面積逐漸增大,當點到達點時,結合圖象可得面積最大為1,得到與的積為12;當點在上運動時,面積逐漸減小,當點到達點時,面積為0,此時結合圖象可知點運動路徑長為7,得到與的和為7,構造關于的一元二方程可求解.【詳解】解:當點在上運動時,面積逐漸增大,當點到達點時,面積最大為1.∴,即.當點在上運動時,面積逐漸減小,當點到達點時,面積為0,此時結合圖象可知點運動路徑長為7,∴.則,代入,得,解得或1,因為,即,所以.故選B.【點睛】本題主要考查動點問題的函數(shù)圖象,解題的關鍵是分析三角形面積隨動點運動的變化過程,找到分界點極值,結合圖象得到相關線段的具體數(shù)值.4、D【分析】對于反比例函數(shù)(k≠0)而言,當k>0時,作為該函數(shù)圖象的雙曲線的兩支應該在第一和第三象限內(nèi).由點A與點B的橫坐標可知,點A與點B應該在第一象限內(nèi),然后根據(jù)反比例函數(shù)增減性分析問題.【詳解】解:∵點A的坐標為(1,a),點B的坐標為(3,b),∴與點A對應的自變量x值為1,與點B對應的自變量x值為3,∵當k>0時,在第一象限內(nèi)y隨x的增大而減小,又∵1<3,即點A對應的x值小于點B對應的x值,∴點A對應的y值大于點B對應的y值,即a>b故選D【點睛】本題考查反比例函數(shù)的圖像性質(zhì),利用數(shù)形結合思想解題是關鍵.5、A【分析】根據(jù)銳角三角函數(shù)的定義,直接得出cotA=,即可得出答案.【詳解】解:在Rt△ABC中,∠C=90°,a=3b,∴;故選擇:A.【點睛】此題主要考查了銳角三角函數(shù)的定義,熟練地應用銳角三角函數(shù)的定義是解決問題的關鍵.6、C【分析】根據(jù)已知條件先求得S△ABE:S△BED=3:2,再根據(jù)三角形相似求得S△ACD=S△ABE=S△BED,根據(jù)S△ABC=S△ABE+S△ACD+S△BED即可求得.【詳解】解:∵AE:ED=3:2,

∴AE:AD=3:5,

∵∠ABE=∠C,∠BAE=∠CAD,

∴△ABE∽△ACD,

∴S△ABE:S△ACD=9:25,

∴S△ACD=S△ABE,

∵AE:ED=3:2,

∴S△ABE:S△BED=3:2,

∴S△ABE=S△BED,

∴S△ACD=S△ABE=S△BED,

∵S△ABC=S△ABE+S△ACD+S△BED=S△BED+S△BED+S△BED=S△BED,

∴S△BDE:S△ABC=3:20,

故選:C.【點睛】本題考查了相似三角形的判定和性質(zhì),不同底等高的三角形面積的求法等,等量代換是本題的關鍵.7、B【詳解】由PB+PC=BC和PA+PC=BC易得PA=PB,根據(jù)線段垂直平分線定理的逆定理可得點P在AB的垂直平分線上,于是可判斷D選項正確.故選B.考點:作圖—復雜作圖8、B【分析】先解方程求得d,根據(jù)圓心到直線的距離d與圓的半徑r之間的關系即可解題.【詳解】解方程:x2–x–6=0,即:,解得,或(不合題意,舍去),

當時,,則直線與圓的位置關系是相交;故選:B【點睛】本題考查了直線與圓的位置關系,只要比較圓心到直線的距離和半徑的大小關系.沒有交點,則;一個交點,則;兩個交點,則.9、A【分析】根據(jù)平行線分線段成比例定理與相似三角形的性質(zhì),逐項判斷即得答案.【詳解】解:A、∵DE∥BC,∴,故本選項正確;B、∵DE∥BC,∴△DEF∽△CBF,∴,故本選項錯誤;C、∵DE∥BC,∴△ADE∽△ABC,∴,故本選項錯誤;D、∵DE∥BC,∴△DEF∽△CBF,∴,故本選項錯誤.故選:A.【點睛】本題考查了平行線分線段成比例定理和相似三角形的判定和性質(zhì),屬于基礎題型,熟練掌握相似三角形的判定和性質(zhì)是解答的關鍵.10、C【解析】根據(jù)三角形內(nèi)角和定理以及圓內(nèi)接四邊形的性質(zhì)即可解決問題;【詳解】解:∵AB是直徑,

∴∠ACB=90°,

∵∠BAC=20°,

∴∠B=90°-20°=70°,

∵∠ADC+∠B=180°,

∴∠ADC=110°,

故選C.【點睛】本題考查圓內(nèi)接四邊形的性質(zhì)、三角形的內(nèi)角和定理、圓周角定理等知識,解題的關鍵是熟練掌握基本知識.二、填空題(每小題3分,共24分)11、1【分析】連接AO,得到直角三角形,再求出OD的長,就可以利用勾股定理求解.【詳解】連接,∵半徑是5,,∴,根據(jù)勾股定理,,∴,因此弦的長是1.【點睛】解答此題不僅要用到垂徑定理,還要作出輔助線AO,這是解題的關鍵.12、(0,3).【分析】令x=0,求出y的值,然后寫出與y軸的交點坐標即可.【詳解】解:x=0時,y=3,所以.圖象與y軸交點的坐標是(0,3).故答案為(0,3).【點睛】本題考查了求拋物線與坐標軸交點的坐標,掌握二次函數(shù)與一元二次方程的聯(lián)系是解答本題的關鍵.13、<2(或x≤2).【解析】試題分析:對于開口向上的二次函數(shù),在對稱軸的左邊,y隨x的增大而減小,在對稱軸的右邊,y隨x的增大而增大.根據(jù)性質(zhì)可得:當x<2時,y隨x的增大而減小.考點:二次函數(shù)的性質(zhì)14、【解析】先由得出,再根據(jù)平行線分線段成比例定理即可得到結論.【詳解】∵,∴,∵a∥b∥c,∴=.故答案為:.【點睛】本題考查了平行線分線段成比例定理,掌握三條平行線截兩條直線,所得的對應線段成比例是解題的關鍵.15、-1【分析】先由方程的解的含義,得出m2-2m-3=0,變形得m2-2m=3,再將要求的代數(shù)式提取公因式-2,然后將m2-2m=3代入,計算即可.【詳解】解:∵m是關于x的方程x2-2x-3=0的解,

∴m2-2m-3=0,

∴m2-2m=3,

∴1m-2m2+2

=-2(m2-2m)+2

=-2×3+2

=-1.

故答案為:-1.【點睛】本題考查了利用一元二次方程的解的含義在代數(shù)式求值中的應用,明確一元二次方程的解的含義并將要求的代數(shù)式正確變形是解題的關鍵.16、或【解析】解方程x2-4x+3=0得,x1=1,x2=3,①當3是直角邊時,∵△ABC最小的角為A,∴tanA=;②當3是斜邊時,根據(jù)勾股定理,∠A的鄰邊=,∴tanA=;所以tanA的值為或.17、2:1【解析】先根據(jù)相似三角形面積的比是4:9,求出其相似比是2:1,再根據(jù)其對應的角平分線的比等于相似比,可知它們對應的角平分線比是2:1.故答案為2:1.點睛:本題考查的是相似三角形的性質(zhì),即相似三角形對應邊的比、對應高線的比、對應角平分線的比、周長的比都等于相似比;面積的比等于相似比的平方.18、16【分析】利用相似三角形面積比等于相似比的平方求解即可.【詳解】解:∵ABC與DEF相似,且ΔABC與ΔDEF的相似比為2:3,∴,∵ΔDEF的面積為36,∴∴ΔABC的面積等于16,故答案為16.【點睛】本題考查了相似三角形的性質(zhì),熟記相似三角形的面積比等于相似比的平方是解決本題的關鍵.三、解答題(共66分)19、(1)證明見解析;(2)m=-1【分析】(1)通過計算判別式的值得到△≥0,從而根據(jù)判別式的意義得到方程根的情況;(2)利用根與系數(shù)的關系得到x1+x2=m+2,x1x2=2m,則,解不等式組,進而得到整數(shù)m的值.【詳解】解:(1)∵,∴方程有兩個實數(shù)根;(2)設方程的兩根為x1,x2,則x1+x2=m+2,x1x2=2m,根據(jù)題意得,解得:-2<m<0,因為m是整數(shù),所以m=-1.【點睛】本題考查了一元二次方程根的判別式以及根與系數(shù)的關系,根據(jù)題意得出不等式組是解(2)的關鍵.20、(1)D(1,4);(1);(3)存在,t的值為1;(4)當或或時,△DPQ是一個以DQ為腰的等腰三角形【分析】(1)由題意得出點D的縱坐標為4,求出y=1x中y=4時x的值即可得;(1)由PQ∥OD證△CPQ∽△COD,得,即,解之可得;(3)分別過點Q、D作QE⊥OC,DF⊥OC交OC與點E、F,對于直線y=1x,令y=4求出x的值,確定出D坐標,進而求出BD,BC的長,利用勾股定理求出CD的長,利用兩對角相等的三角形相似得到三角形CQE與三角形CDF相似,由相似得比例表示出QE,由底PC,高QE表示出三角形PQC面積,再表示出三角形ODP面積,依據(jù)S△DOP=S△PCQ列出關于t的方程,解之可得;(4)由三角形CQE與三角形CDF相似,利用相似得比例表示出CE,PE,進而利用勾股定理表示出PQ1,DP1,以及DQ,分兩種情況考慮:①當DQ=DP;②當DQ=PQ,求出t的值即可.【詳解】解:(1)∵OA=4∴把代入得∴D(1,4).(1)在矩形OABC中,OA=4,OC=5∴AB=OC=5,BC=OA=4∴BD=3,DC=5由題意知:DQ=PC=t∴OP=CQ=5t∵PQ∥OD∴∴∴.(3)分別過點Q、D作QE⊥OC,DF⊥OC交OC與點E、F則DF=OA=4∴DF∥QE∴△CQE∽△CDF∴∴∴∵S△DOP=S△PCQ∴∴,當t=5時,點P與點O重合,不構成三角形,應舍去∴t的值為1.(4)∵△CQE∽△CDF∴∴∴①當時,,解之得:②當時,解之得:答:當或或時,△DPQ是一個以DQ為腰的等腰三角形.【點睛】此題屬于一次函數(shù)的綜合問題,涉及的知識有:坐標與圖形性質(zhì),相似三角形的判定與性質(zhì),勾股定理,以及等腰三角形的性質(zhì),熟練掌握相似三角形的判定與性質(zhì)以及勾股定理是解本題的關鍵.21、見解析.【分析】根據(jù)兩角相等的兩個三角形相似證明△ADC∽△BEC即可.【詳解】證明:∵AD,BE分別是BC,AC上的高∴∠D=∠E=90°又∠ACD=∠BCE(對頂角相等)∴△ADC∽△BEC∴.【點睛】本題考查了相似三角形的判定,熟練掌握形似三角形的判定方法是解答本題的關鍵.①有兩個對應角相等的三角形相;②有兩個對應邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應邊的比相等,則兩個三角形相似.22、(1)(2,1);(2)n=﹣m2+2m;(3)1<b<8或0<b<1【分析】(1)當x=2時,y=1,即可確定點D的坐標;(2)根據(jù)拋物線的頂點坐標即可得n關于m的函數(shù)解析式;(3)根據(jù)拋物線開口向上,對稱軸方程,列出不等式組即可求解.【詳解】解:(1)當x=2時,y=1﹣2b+2b=1,∴無論b取何值,該拋物線都經(jīng)過定點D.點D的坐標為(2,1);(2)拋物線y=x2﹣bx+2b=(x﹣)2+2b﹣所以拋物線的頂點坐標為(,2b﹣)∴n=2b﹣=﹣m2+2m.所以n關于m的函數(shù)解析式為:n=﹣m2+2m.(3)因為拋物線開口向上,對稱軸方程x=,根據(jù)題意,得2<<1或0<<2解得1<b<8或0<b<1.【點睛】本題考查二次函數(shù)的性質(zhì),關鍵在于牢記基礎性質(zhì).23、(1);;(2)B點的坐標為(-2,-1);當0<x<1和x<-2時,y1>y2.【分析】(1)根據(jù)tan∠AOC==2,△OAC的面積為1,確定點A的坐標,把點A的坐標分別代入兩個解析式即可求解;(2)根據(jù)兩個解析式求得交點B的坐標,觀察圖象,得到當x為何值時,反比例函數(shù)y1的值大于一次函數(shù)y2的值.【詳解】解:(1)在Rt△OAC中,設OC=m.∵tan∠AOC==2,∴AC=2×OC=2m.∵S△OAC=×OC×AC=×m×2m=1,∴m2=1.∴m=1(負值舍去).∴A點的坐標為(1,2).把A點的坐標代入中,得k1=2.∴反比例函數(shù)的表達式為.把A點的坐標代入中,得k2+1=2,∴k2=1.∴一次函數(shù)的表達式.(2)B點的坐標為(-2,-1).當0<x<1和x<-2時,y1>y2.【點睛】本題考查反比例及一次函數(shù)的的應用;待定系數(shù)法求解析式;圖象的交點等,掌握反比例及一次函數(shù)的性質(zhì)是本題的解題關鍵.24、(1)見解析;(2)成立,見解析;(3)k≤2【分析】(1)如圖1中,作AE⊥x軸于E,BF⊥y軸于F,連接EF,AF,BE.證明四邊形ACFE,四邊形BDEF都是平行四邊形即可解決問題.(2)證明方法類似(1).(3)由題意CD=3,推出BD≤2,求出BD=2時,k的值即可判斷.【詳解】解:(1)如圖1中,作AE⊥x軸于E,BF⊥y軸于F,連接EF,AF,BE.∵AE∥y軸,∴S△AOE=S△AEF=,∵BF∥x軸,∴S△BEF=S△OBF=,∴S△AEF=S△BEF,∴AB∥EF,∴四邊形ACFE,四邊形BDEF都是平行四邊形,∴AC=EF,BD=EF,∴AC=BD.(2)如圖1中,如圖1中,作AE⊥x軸于E,BF⊥y軸于F,連接EF,AF,BE.∵AE∥y軸,∴S△AOE=S△AEF=,∵B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論