版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,二次函數(shù)的圖象與x軸相交于(﹣2,0)和(4,0)兩點,當(dāng)函數(shù)值y>0時,自變量x的取值范圍是()A.x<﹣2 B.﹣2<x<4 C.x>0 D.x>42.某中學(xué)籃球隊12名隊員的年齡情況如下:年齡(單位:歲)1415161718人數(shù)15321則這個隊隊員年齡的眾數(shù)和中位數(shù)分別是()A.15,16 B.15,15 C.15,15.5 D.16,153.如圖,在半徑為的中,弦長,則點到的距離為()A. B. C. D.4.小悅乘座中國最高的摩天輪“南昌之星”,從最低點開始旋轉(zhuǎn)一圈,她離地面的高度y(米)與旋轉(zhuǎn)時間x(分)之間的關(guān)系可以近似地用二次函數(shù)來刻畫.經(jīng)測試得出部分?jǐn)?shù)據(jù)如表.根據(jù)函數(shù)模型和數(shù)據(jù),可推斷出南昌之星旋轉(zhuǎn)一圈的時間大約是()x(分)…13.514.716.0…y(米)…156.25159.85158.33…A.32分 B.30分 C.15分 D.13分5.如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點O、B的坐標(biāo)分別是(0,0),(2,0),則頂點C的坐標(biāo)是()A.(1,1) B.(﹣1,﹣1) C.(1,﹣1) D.(﹣1,1)6.下列事件中,必然發(fā)生的事件是()A.隨意翻到一本書的某頁,這頁的頁碼是奇數(shù)B.通常溫度降到0℃以下,純凈的水結(jié)冰C.地面發(fā)射一枚導(dǎo)彈,未擊中空中目標(biāo)D.測量某天的最低氣溫,結(jié)果為-150℃7.下列運(yùn)算中,正確的是().A. B. C. D.8.如圖,中,,,點是的外心.則()A. B. C. D.9.如圖,內(nèi)接于⊙,是⊙的直徑,,點是弧上一點,連接,則的度數(shù)是()A.50° B.45° C.40° D.35°10.從地面豎直向上拋出一小球,小球的高度(單位:)與小球運(yùn)動時間(單位:)之間的函數(shù)關(guān)系如圖所示.下列結(jié)論:①小球在空中經(jīng)過的路程是;②小球拋出3秒后,速度越來越快;③小球拋出3秒時速度為0;④小球的高度時,.其中正確的是()A.①④ B.①② C.②③④ D.②③二、填空題(每小題3分,共24分)11.已知二次函數(shù)y=x2﹣2mx(m為常數(shù)),當(dāng)﹣1≤x≤2時,函數(shù)值y的最小值為﹣2,則m的值是_____.12.在比例尺為1:3000000的地圖上,測得AB兩地間的圖上距離為5厘米,則AB兩地間的實際距離是______千米.13.圖1是一輛吊車的實物圖,圖2是其工作示意圖,AC是可以伸縮的起重臂,其轉(zhuǎn)動點A離地面BD的高度AH為3.4m.當(dāng)起重臂AC長度為9m,張角∠HAC為118°時,操作平臺C離地面的高度為_______米.(結(jié)果保留小數(shù)點后一位:參考數(shù)據(jù):sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)14.如圖,△ABC中,D、E分別在AB、AC上,DE∥BC,AD:AB=2:3,則△ADE與△ABC的面積之比為________.15.已知CD是Rt△ABC的斜邊AB上的中線,若∠A=35°,則∠BCD=_____________.16.已知,則_______.17.二次函數(shù)y=ax2+4ax+c的最大值為4,且圖象過點(-3,0),則該二次函數(shù)的解析式為____________.18.如圖,由邊長為1的小正方形組成的網(wǎng)格中,點為格點(即小正方形的頂點),與相交于點,則的長為_________.三、解答題(共66分)19.(10分)如圖,將邊長為40cm的正方形硬紙板的四個角各剪掉一個同樣大小的正方形,剩余部分折成一個無蓋的盒子.(紙板的厚度忽略不計).(1)若該無蓋盒子的底面積為900cm2,求剪掉的正方形的邊長;(2)求折成的無蓋盒子的側(cè)面積的最大值.20.(6分)定義:只有一組對角是直角的四邊形叫做損矩形,連接它的兩個非直角頂點的線段叫做這個損矩形的直徑.如圖1,∠ABC=∠ADC=90°,四邊形ABCD是損矩形,則該損矩形的直徑是線段AC.同時我們還發(fā)現(xiàn)損矩形中有公共邊的兩個三角形角的特點:在公共邊的同側(cè)的兩個角是相等的.如圖1中:△ABC和△ABD有公共邊AB,在AB同側(cè)有∠ADB和∠ACB,此時∠ADB=∠ACB;再比如△ABC和△BCD有公共邊BC,在CB同側(cè)有∠BAC和∠BDC,此時∠BAC=∠BDC.(1)請在圖1中再找出一對這樣的角來:=.(2)如圖2,△ABC中,∠ABC=90°,以AC為一邊向外作菱形ACEF,D為菱形ACEF對角線的交點,連接BD,當(dāng)BD平分∠ABC時,判斷四邊形ACEF為何種特殊的四邊形?請說明理由.(3)在第(2)題的條件下,若此時AB=6,BD=8,求BC的長.21.(6分)如圖,已知直線AB經(jīng)過點(0,4),與拋物線y=x2交于A,B兩點,其中點A的橫坐標(biāo)是.(1)求這條直線的函數(shù)關(guān)系式及點B的坐標(biāo).(2)在x軸上是否存在點C,使得△ABC是直角三角形?若存在,求出點C的坐標(biāo),若不存在請說明理由.(3)過線段AB上一點P,作PM∥x軸,交拋物線于點M,點M在第一象限,點N(0,1),當(dāng)點M的橫坐標(biāo)為何值時,MN+3MP的長度最大?最大值是多少?22.(8分)已知關(guān)于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分別為△ABC三邊的長.(1)如果x=﹣1是方程的根,試判斷△ABC的形狀,并說明理由;(2)如果方程有兩個相等的實數(shù)根,試判斷△ABC的形狀,并說明理由;(3)如果△ABC是等邊三角形,試求這個一元二次方程的根.23.(8分)已知拋物線y=mx2+(3–2m)x+m–2(m≠0)與x軸有兩個不同的交點.(1)求m的取值范圍;(2)判斷點P(1,1)是否在拋物線上;(3)當(dāng)m=1時,求拋物線的頂點Q的坐標(biāo).24.(8分)先化簡,后求值:,其中.25.(10分)如圖1,將三角板放在正方形上,使三角板的直角頂點與正方形的頂點重合,三角板的一邊交于點,另一邊交的延長線于點.(1)求證:;(2)如圖2,將三角板繞點旋轉(zhuǎn),當(dāng)時,連接交于點求證:;(3)如圖3,將“正方形”改為“矩形”,且將三角板的直角頂點放于對角線(不與端點重合)上,使三角板的一邊經(jīng)過點,另一邊交于點,若,求的值.26.(10分)[問題發(fā)現(xiàn)]如圖①,在中,點是的中點,點在邊上,與相交于點,若,則_____;[拓展提高]如圖②,在等邊三角形中,點是的中點,點在邊上,直線與相交于點,若,求的值.[解決問題]如圖③,在中,,點是的中點,點在直線上,直線與直線相交于點,.請直接寫出的長.
參考答案一、選擇題(每小題3分,共30分)1、B【詳解】當(dāng)函數(shù)值y>0時,自變量x的取值范圍是:﹣2<x<1.故選B.2、C【分析】由題意直接根據(jù)眾數(shù)和中位數(shù)的定義求解可得.【詳解】解:∵這組數(shù)據(jù)中15出現(xiàn)5次,次數(shù)最多,∴眾數(shù)為15歲,中位數(shù)是第6、7個數(shù)據(jù)的平均數(shù),∴中位數(shù)為=15.5歲,故選:C.【點睛】本題考查眾數(shù)與中位數(shù),中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù),如果中位數(shù)的概念掌握得不好,不把數(shù)據(jù)按要求重新排列,就會出錯;眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù).3、B【分析】過點O作OC⊥AB于點C,由在半徑為50cm的⊙O中,弦AB的長為50cm,可得△OAB是等邊三角形,繼而求得∠AOB的度數(shù),然后由三角函數(shù)的性質(zhì),求得點O到AB的距離.【詳解】解:過點O作OC⊥AB于點C,如圖所示:
∵OA=OB=AB=50cm,
∴△OAB是等邊三角形,
∴∠OAB=60°,∵OC⊥AB故選:B【點睛】此題考查了垂徑定理、等邊三角形的判定與性質(zhì)、三角函數(shù),熟練掌握垂徑定理,證明△OAB是等邊三角形是解決問題的關(guān)鍵.4、B【分析】利用二次函數(shù)的性質(zhì),由題意,最值在自變量大于14.7小于16.0之間,由此不難找到答案.【詳解】最值在自變量大于14.7小于16.0之間,所以最接近摩天輪轉(zhuǎn)一圈的時間的是30分鐘.故選:B.【點睛】此題考查二次函數(shù)的實際運(yùn)用,利用表格得出函數(shù)的性質(zhì),找出最大值解決問題.5、C【詳解】解:由圖可知,點B在第四象限.各選項中在第四象限的只有C.故選C.6、B【解析】解:A.隨意翻到一本書的某頁,這頁的頁碼是奇數(shù),是隨機(jī)事件;B.通常溫度降到0℃以下,純凈的水結(jié)冰,是必然事件;C.地面發(fā)射一枚導(dǎo)彈,未擊中空中目標(biāo),是隨機(jī)事件;D.測量某天的最低氣溫,結(jié)果為-150℃,是不可能事件.故選B.7、C【解析】試題分析:3a和2b不是同類項,不能合并,A錯誤;和不是同類項,不能合并,B錯誤;,C正確;,D錯誤,故選C.考點:合并同類項.8、C【分析】根據(jù)三角形內(nèi)角和定理求出∠A=70°,根據(jù)圓周角定理解答即可.【詳解】解:∵∠ABC=50°,∠ACB=60°
∴∠A=70°
∵點O是△ABC的外心,
∴∠BOC=2∠A=140°,
故選:C【點睛】本題考查的是三角形內(nèi)角和定理、外心的定義和圓周角定理.9、A【分析】根據(jù)直徑所對的圓周角是直角可知∠ABC=90°,計算出∠BAC的度數(shù),再根據(jù)同弧所對的圓周角相等即可得出∠D的度數(shù).【詳解】解:∵是⊙的直徑,∴∠ABC=90°,又∵,∴∠BAC=90°-40°=50°,又∵∠BAC與所對的弧相等,∴∠D=∠BAC=50°,故答案為A.【點睛】本題考查了直徑所對的圓周角是直角、同弧所對圓周角相等等知識點,解題的關(guān)鍵是熟知直徑所對的圓周角是直角及同弧所對圓周角相等.10、D【分析】根據(jù)函數(shù)的圖象中的信息判斷即可.【詳解】①由圖象知小球在空中達(dá)到的最大高度是;故①錯誤;②小球拋出3秒后,速度越來越快;故②正確;③小球拋出3秒時達(dá)到最高點即速度為0;故③正確;④設(shè)函數(shù)解析式為:,把代入得,解得,∴函數(shù)解析式為,把代入解析式得,,解得:或,∴小球的高度時,或,故④錯誤;故選D.【點睛】本題考查了二次函數(shù)的應(yīng)用,解此題的關(guān)鍵是正確的理解題意二、填空題(每小題3分,共24分)11、﹣1.5或2【解析】將二次函數(shù)配方成頂點式,分m<-1、m>2和-1≤m≤2三種情況,根據(jù)y的最小值為-2,結(jié)合二次函數(shù)的性質(zhì)求解可得.【詳解】y=x2-2mx=(x-m)2-m2,
①若m<-1,當(dāng)x=-1時,y=1+2m=-2,
解得:m=-32=-1.5;
②若m>2,當(dāng)x=2時,y=4-4m=-2,
解得:m=32<2(舍);
③若-1≤m≤2,當(dāng)x=m時,y=-m2=-2,
解得:m=2或m=-2<-1(舍),
∴m的值為-1.5或2,
故答案為:﹣1.5或【點睛】本題考查了二次函數(shù)的最值,根據(jù)二次函數(shù)的增減性分類討論是解題的關(guān)鍵.12、150【分析】設(shè)實際距離為x千米,根據(jù)比例尺=圖上距離:實際距離計算即可得答案.【詳解】設(shè)實際距離為x千米,5厘米=0.00005千米,∵比例尺為1:3000000,圖上距離為5cm,∴1:3000000=0.00005:x,解得:x=150(千米),故答案為:150【點睛】本題考查了比例尺的定義,能夠根據(jù)比例尺由圖上距離正確計算實際距離是解題關(guān)鍵,注意單位的換算.13、7.6【分析】作于,于,如圖2,易得四邊形為矩形,則,,再計算出,在中利用正弦可計算出,然后計算即可.【詳解】解:作于E,于,如圖2,∴四邊形為矩形,∴,,∴,∴在中,,∴,∴,∴操作平臺離地面的高度為.故答案是:.【點睛】本題考查了解直角三角形的應(yīng)用:先將實際問題抽象為數(shù)學(xué)問題(畫出平面圖形,構(gòu)造出直角三角形轉(zhuǎn)化為解直角三角形問題),然后利用三角函數(shù)的定義進(jìn)行幾何計算.14、4:1【解析】由DE與BC平行,得到兩對同位角相等,利用兩對角相等的三角形相似得到三角形ADE與三角形ABC相似,利用相似三角形的面積之比等于相似比的平方即可得到結(jié)果.【詳解】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴S△ADE:S△ABC=(AD:AB)2=4:1.故答案為:4:1.【點睛】本題考查了相似三角形的判定與性質(zhì),熟練掌握相似三角形的判定與性質(zhì)是解答本題的關(guān)鍵.15、55°【分析】這道題可以根據(jù)CD為斜邊AB的中線得出CD=AD,由∠A=35°得出∠A=∠ACD=35°,則∠BCD=90°-35°=55°.【詳解】如圖,∵CD為斜邊AB的中線∴CD=AD∵∠A=35°∴∠A=∠ACD=35°∵∠ACD+∠BCD=90°則∠BCD=90°-35°=55°故填:55°.【點睛】此題主要考查三角形內(nèi)角度求解,解題的關(guān)鍵是熟知直角三角形的性質(zhì).16、-5【分析】設(shè),可用參數(shù)表示、,再根據(jù)分式的性質(zhì),可得答案.【詳解】解:設(shè),得,,,故答案為:.【點睛】本題考查了比例的性質(zhì),利用參數(shù)表示、可以簡化計算過程.17、y=-4x2-16x-12【解析】∵拋物線的對稱軸為直線x==﹣2,∴拋物線的頂點坐標(biāo)為(﹣2,4),又∵拋物線過點(﹣3,0),∴,解得:a=﹣4,c=﹣12,則拋物線的解析式為y=-4x2-16x-12.故答案為y=-4x2-16x-12.【點睛】本題考查用待定系數(shù)法求二次函數(shù)解析式,解此題的關(guān)鍵在于先根據(jù)頂點坐標(biāo)與函數(shù)系數(shù)的關(guān)系,求得頂點坐標(biāo),再用待定系數(shù)法求函數(shù)解析式即可.18、【分析】如圖所示,由網(wǎng)格的特點易得△CEF≌△DBF,從而可得BF的長,易證△BOF∽△AOD,從而可得AO與AB的關(guān)系,然后根據(jù)勾股定理可求出AB的長,進(jìn)而可得答案.【詳解】解:如圖所示,∵∠CEB=∠DBF=90°,∠CFE=∠DFB,CE=DB=1,∴△CEF≌△DBF,∴BF=EF=BE=,∵BF∥AD,∴△BOF∽△AOD,∴,∴,∵,∴.故答案為:【點睛】本題以網(wǎng)格為載體,考查了全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)以及勾股定理等知識,屬于常考題型,熟練掌握上述基本知識是解答的關(guān)鍵.三、解答題(共66分)19、(1)5cm;(1)最大值是800cm1.【分析】(1)設(shè)剪掉的正方形的邊長為x
cm,則AB=(40-1x)cm,根據(jù)盒子的底面積為484cm1,列方程解出即可;(1)設(shè)剪掉的正方形的邊長為x
cm,盒子的側(cè)面積為y
cm1,側(cè)面積=4個長方形面積;則y=-8x1+160x,配方求最值.【詳解】(1)設(shè)剪掉的正方形的邊長為xcm,則(40﹣1x)1=900,即40﹣1x=±30,解得x1=35(不合題意,舍去),x1=5;答:剪掉的正方形邊長為5cm;(1)設(shè)剪掉的正方形的邊長為xcm,盒子的側(cè)面積為ycm1,則y與x的函數(shù)關(guān)系式為y=4(40﹣1x)x,即y=﹣8x1+160x,y=﹣8(x﹣10)1+800,∵﹣8<0,∴y有最大值,∴當(dāng)x=10時,y最大=800;答:折成的長方體盒子的側(cè)面積有最大值,這個最大值是800cm1.【點睛】本題考查了一元二次方程的應(yīng)用和二次函數(shù)的最值問題,根據(jù)幾何圖形理解如何建立一元二次方程和函數(shù)關(guān)系式是解題的關(guān)鍵;明確正方形面積=邊長×邊長,長方形面積=長×寬;理解長方體盒子的底面是哪個長方形;解題時應(yīng)該注意如何利用配方法求函數(shù)的最大值.20、(1)∠ABD=∠ACD(或∠DAC=∠DBC);(2)四邊形ACEF為正方形,理由見解析;(3)1【分析】(1)根據(jù)題意給出的性質(zhì)即可得出一組角相等;(2)先證明四邊形ACEF為菱形,再證明四邊形ABCD為損矩形,根據(jù)損矩形的性質(zhì)即可求出四邊形ACEF是正方形;(3)過點D作DM⊥BC,過點E作EN⊥BC交BC的延長線于點N,可得△BDM為等腰直角三角形,從而得出△ABC≌△CNE根據(jù)性質(zhì)即可得出BC的長.【詳解】(1)由圖1得:△ABD和△ADC有公共邊AD,在AD同側(cè)有∠ABD和∠ACD,此時∠ABD=∠ACD;故答案為:∠ABD=∠ACD(或∠DAC=∠DBC);(2)四邊形ACEF為正方形證明:∵∠ABC=90°,BD平分∠ABC,∴∠ABD=∠CBD=45°,∵四邊形ACEF為菱形,∴AE⊥CF,即∠ADC=90°,∵∠ABC=90°,∴四邊形ABCD為損矩形,由(1)得∠ACD=∠ABD=45°,∴∠ACE=2∠ACD=90°,∴四邊形ACEF為正方形.(3)過點D作DM⊥BC,過點E作EN⊥BC交BC的延長線于點N,∵∠DBM=45°,∴△BDM為等腰直角三角形,∴BM=DM=,∵AC=EC,∠ACE=90°,∠ABC=CNE=90°,∴∠ACB=∠CEN,∴△ABC≌△CNE(AAS),∴CN=AB=6,∵DM∥EN,AD=DE,∴BM=MN=8,∴BC=BN﹣CN=2BM﹣CN=1.【點睛】本題考查新定義下的圖形計算,主要運(yùn)用到矩形菱形正方形的性質(zhì),三角形全等的判定和性質(zhì),關(guān)鍵在于熟練掌握基礎(chǔ)知識,合理利用輔助線得出條件計算.21、(1)直線y=x+4,點B的坐標(biāo)為(8,16);(2)點C的坐標(biāo)為(﹣,0),(0,0),(6,0),(32,0);(3)當(dāng)M的橫坐標(biāo)為6時,MN+3PM的長度的最大值是1.【解析】(1)首先求得點A的坐標(biāo),然后利用待定系數(shù)法確定直線的解析式,從而求得直線與拋物線的交點坐標(biāo);(2)分若∠BAC=90°,則AB2+AC2=BC2;若∠ACB=90°,則AB2=AC2+BC2;若∠ABC=90°,則AB2+BC2=AC2三種情況求得m的值,從而確定點C的坐標(biāo);(3)設(shè)M(a,a2),得MN=a2+1,然后根據(jù)點P與點M縱坐標(biāo)相同得到x=,從而得到MN+3PM=﹣a2+3a+9,確定二次函數(shù)的最值即可.【詳解】(1)∵點A是直線與拋物線的交點,且橫坐標(biāo)為-2,,A點的坐標(biāo)為(-2,1),設(shè)直線的函數(shù)關(guān)系式為y=kx+b,將(0,4),(-2,1)代入得解得∴y=x+4∵直線與拋物線相交,解得:x=-2或x=8,
當(dāng)x=8時,y=16,
∴點B的坐標(biāo)為(8,16);(2)存在.∵由A(-2,1),B(8,16)可求得AB2==325.設(shè)點C(m,0),同理可得AC2=(m+2)2+12=m2+4m+5,BC2=(m-8)2+162=m2-16m+320,①若∠BAC=90°,則AB2+AC2=BC2,即325+m2+4m+5=m2-16m+320,解得m=-;②若∠ACB=90°,則AB2=AC2+BC2,即325=m2+4m+5+m2-16m+320,解得m=0或m=6;③若∠ABC=90°,則AB2+BC2=AC2,即m2+4m+5=m2-16m+320+325,解得m=32,∴點C的坐標(biāo)為(-,0),(0,0),(6,0),(32,0)(3)設(shè)M(a,a2),則MN=,又∵點P與點M縱坐標(biāo)相同,∴x+4=a2,∴x=,∴點P的橫坐標(biāo)為,∴MP=a-,∴MN+3PM=a2+1+3(a-)=-a2+3a+9=-(a-6)2+1,∵-2≤6≤8,∴當(dāng)a=6時,取最大值1,∴當(dāng)M的橫坐標(biāo)為6時,MN+3PM的長度的最大值是122、(1)△ABC是等腰三角形;(2)△ABC是直角三角形;(3)x1=0,x2=﹣1.【解析】試題分析:(1)直接將x=﹣1代入得出關(guān)于a,b的等式,進(jìn)而得出a=b,即可判斷△ABC的形狀;(2)利用根的判別式進(jìn)而得出關(guān)于a,b,c的等式,進(jìn)而判斷△ABC的形狀;(3)利用△ABC是等邊三角形,則a=b=c,進(jìn)而代入方程求出即可.試題解析:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有兩個相等的實數(shù)根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)當(dāng)△ABC是等邊三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理為:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.考點:一元二次方程的應(yīng)用.23、(1)m<且m≠0;(2)點P(1,1)在拋物線上;(3)拋物線的頂點Q的坐標(biāo)為(–,–).【分析】(1)與x軸有兩個不同的交點即令y=0,得到的一元二次方程的判別式△>0,據(jù)此即可得到不等式求解;(2)把點(1,1)代入函數(shù)解析式判斷是否成立即可;(3)首先求得函數(shù)解析式,化為頂點式,可求得頂點坐標(biāo).【詳解】(1)由題意得,(3–2m)2–4m(m–2)>0,m≠0,解得,m<且m≠0;(2)當(dāng)x=1時,mx2+(3–2m)x+m–2=m+(3–2m)+m–2=1,∴點P(1,1)在拋物線上;(3)當(dāng)m=1時,函數(shù)解析式為:y=x2+x–1=(x+)2–,∴拋物線的頂點Q的坐標(biāo)為(–,–).【點睛】本題考查了二次函數(shù)圖象與x軸的公共點的個數(shù)的判定方法,如果△>0,則拋物線與x軸有兩個不同的交點;如果△=0,則二次函數(shù)與x軸有一個交點;如果△<0,則二次函數(shù)與x軸無交點.24、,【分析】先將括號內(nèi)的分式通分并相加,再利用分式的除法法則進(jìn)行計算即可得到化簡結(jié)果,代入x的值即可求解.【詳解】解:,當(dāng)時,原式.【點睛】本題考查分式的化簡求值,掌握分式的性質(zhì)和分式的運(yùn)算法則是解題的關(guān)鍵.25、(1)證明見解析;(2)證明見解析;(3).【分析】(1)根據(jù)旋轉(zhuǎn)全等模型利用正方形的性質(zhì),由可證明,從而可得結(jié)論;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年福建莆田石南輪渡第二輪船員招聘11人筆試模擬試題及答案解析
- 2026浙江溫州市甌江口新區(qū)國有資產(chǎn)經(jīng)營管理有限公司勞務(wù)外包員工招聘5人考試備考題庫及答案解析
- 2026四川成都武侯區(qū)-金堂縣“人才聯(lián)聘”面向社會考核招聘事業(yè)單位高層次人才3人筆試備考題庫及答案解析
- 2026年淮南安徽理工大學(xué)科技園技術(shù)經(jīng)理人招募考試備考試題及答案解析
- 2026上海市事業(yè)單位招聘2468人筆試模擬試題及答案解析
- 2026上半年安徽事業(yè)單位聯(lián)考安慶市迎江區(qū)招聘14人考試備考試題及答案解析
- 2026年二手房市場的崛起趨勢與預(yù)測
- 2026年多層液體的流動與分層特性
- 2026年創(chuàng)新的時間黑金色的美麗蛻變
- 2026年地下水的質(zhì)量監(jiān)測與控制措施
- (一診)重慶市九龍坡區(qū)區(qū)2026屆高三學(xué)業(yè)質(zhì)量調(diào)研抽測(第一次)物理試題
- 2026年榆能集團(tuán)陜西精益化工有限公司招聘備考題庫完整答案詳解
- 2026廣東省環(huán)境科學(xué)研究院招聘專業(yè)技術(shù)人員16人筆試參考題庫及答案解析
- 2026年保安員理論考試題庫
- 駱駝祥子劇本殺課件
- 2025首都文化科技集團(tuán)有限公司招聘9人考試筆試備考題庫及答案解析
- 農(nóng)業(yè)科技合作協(xié)議2025
- 2025年人保保險業(yè)車險查勘定損人員崗位技能考試題及答案
- 被動關(guān)節(jié)活動訓(xùn)練
- GB/T 5781-2025緊固件六角頭螺栓全螺紋C級
- 教師心理素養(yǎng)對學(xué)生心理健康的影響研究-洞察及研究
評論
0/150
提交評論