2022-2023學(xué)年山東省臨沂市普通高校對(duì)口單招數(shù)學(xué)自考真題(含答案)_第1頁(yè)
2022-2023學(xué)年山東省臨沂市普通高校對(duì)口單招數(shù)學(xué)自考真題(含答案)_第2頁(yè)
2022-2023學(xué)年山東省臨沂市普通高校對(duì)口單招數(shù)學(xué)自考真題(含答案)_第3頁(yè)
2022-2023學(xué)年山東省臨沂市普通高校對(duì)口單招數(shù)學(xué)自考真題(含答案)_第4頁(yè)
2022-2023學(xué)年山東省臨沂市普通高校對(duì)口單招數(shù)學(xué)自考真題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩25頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年山東省臨沂市普通高校對(duì)口單招數(shù)學(xué)自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(22題)1.已知等差數(shù)列中,前15項(xiàng)的和為50,則a8等于()A.6

B.

C.12

D.

2.若輸入-5,按圖中所示程序框圖運(yùn)行后,輸出的結(jié)果是()A.-5B.0C.-1D.1

3.A.B.C.D.

4.函數(shù)A.1B.2C.3D.4

5.A.(1,2)B.(3,4)C.(0,1)D.(5,6)

6.若a0.6<a<a0.4,則a的取值范圍為()</aA.a>1B.0<a<1C.a>0D.無(wú)法確定

7.設(shè)集合A={x|1≤x≤5},Z為整數(shù)集,則集合A∩Z中元素的個(gè)數(shù)是()A.6B.5C.4D.3

8.已知集合A={1,2,3,4,5,6,7},B={3,4,5},那么=()A.{6,7}B.{1,2,6,7}C.{3,4,5}D.{1,2}

9.下列函數(shù)中,是增函數(shù),又是奇函數(shù)的是(〕A.y=

B.y=1/x

C.y=x2

D.y=x1/3

10.在等差數(shù)列{an}中,如果a3+a4+a5+a6+a7+a8=30,則數(shù)列的前10項(xiàng)的和S10為()A.30B.40C.50D.60

11.橢圓的焦點(diǎn)坐標(biāo)是()A.(,0)

B.(±7,0)

C.(0,±7)

D.(0,)

12.A.1B.-1C.2D.-2

13.設(shè)m>n>1且0<a<1,則下列不等式成立的是()A.

B.

C.

D.

14.A.11B.99C.120D.121

15.直線3x+4y=b與圓x2+y2-2x-2y+1=0相切,則b的值是()A.-2或12B.2或-12C.-2或-12D.2或12

16.設(shè)f(x)是定義在R上的偶函數(shù),當(dāng)x≤0時(shí),f(x)=2x2-x,則f(-1)=()A.-3B.-1C.1D.3

17.若a<b<0,則下列結(jié)論正確的是()A.a2<b2

B.a3<b<b3</b

C.|a|<|b|

D.a/b<1

18.從1,2,3,4這4個(gè)數(shù)中任取兩個(gè)數(shù),則取出的兩數(shù)都是奇數(shù)的概率是()A.2/3B.1/2C.1/6D.1/3

19.設(shè)AB是拋物線上的兩點(diǎn),O為原點(diǎn),OA丄OB,A點(diǎn)的橫坐標(biāo)是-1,則B點(diǎn)的橫坐標(biāo)為()A.lB.4C.8D.16

20.已知互相垂直的平面α,β交于直線l若直線m,n滿足m⊥a,n⊥β則()A.m//LB.m//nC.n⊥LD.m⊥n

21.對(duì)于數(shù)列0,0,0,...,0,...,下列表述正確的是()A.是等比但不是等差數(shù)列B.既是等差又是等比數(shù)列C.既不是等差又不是等比數(shù)列D.是等差但不是等比數(shù)列

22.已知向量a=(sinθ,-2),6=(1,cosθ),且a⊥b,則tanθ的值為()A.2B.-2C.1/2D.-1/2

二、填空題(10題)23.

24.某程序框圖如下圖所示,該程序運(yùn)行后輸出的a的最大值為_(kāi)_____.

25.設(shè)AB是異面直線a,b的公垂線段,已知AB=2,a與b所成角為30°,在a上取線段AP=4,則點(diǎn)P到直線b的距離為_(kāi)____.

26.

27.已知_____.

28.某工廠生產(chǎn)A、B、C三種不同型號(hào)的產(chǎn)品,產(chǎn)品數(shù)量之比依次為2:3:4,現(xiàn)用分層抽樣方法抽出一個(gè)容量為n的樣本,樣本中A種型號(hào)產(chǎn)品有6件,那么n=

。

29.若復(fù)數(shù),則|z|=_________.

30.

31.

32.已知_____.

三、計(jì)算題(10題)33.求焦點(diǎn)x軸上,實(shí)半軸長(zhǎng)為4,且離心率為3/2的雙曲線方程.

34.有四個(gè)數(shù),前三個(gè)數(shù)成等差數(shù)列,公差為10,后三個(gè)數(shù)成等比數(shù)列,公比為3,求這四個(gè)數(shù).

35.有語(yǔ)文書(shū)3本,數(shù)學(xué)書(shū)4本,英語(yǔ)書(shū)5本,書(shū)都各不相同,要把這些書(shū)隨機(jī)排在書(shū)架上.(1)求三種書(shū)各自都必須排在一起的排法有多少種?(2)求英語(yǔ)書(shū)不挨著排的概率P。

36.己知直線l與直線y=2x+5平行,且直線l過(guò)點(diǎn)(3,2).(1)求直線l的方程;(2)求直線l在y軸上的截距.

37.(1)求函數(shù)f(x)的定義域;(2)判斷函數(shù)f(x)的奇偶性,并說(shuō)明理由。

38.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。

39.從含有2件次品的7件產(chǎn)品中,任取2件產(chǎn)品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

40.近年來(lái),某市為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾的正確分類投放情況,現(xiàn)隨機(jī)抽取了該市四類垃圾箱總計(jì)100噸生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如下(單位:噸):(1)試估計(jì)“可回收垃圾”投放正確的概率;(2)試估計(jì)生活垃圾投放錯(cuò)誤的概率。

41.甲、乙兩人進(jìn)行投籃訓(xùn)練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒(méi)有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.

42.某小組有6名男生與4名女生,任選3個(gè)人去參觀某展覽,求(1)3個(gè)人都是男生的概率;(2)至少有兩個(gè)男生的概率.

四、簡(jiǎn)答題(10題)43.已知a是第二象限內(nèi)的角,簡(jiǎn)化

44.在拋物線y2=12x上有一弦(兩端點(diǎn)在拋物線上的線段)被點(diǎn)M(1,2)平分.(1)求這條弦所在的直線方程;(2)求這條弦的長(zhǎng)度.

45.化簡(jiǎn)

46.已知等差數(shù)列{an},a2=9,a5=21(1)求{an}的通項(xiàng)公式;(2)令bn=2n求數(shù)列{bn}的前n項(xiàng)和Sn.

47.在三棱錐P-ABC中,已知PA丄BC,PA=a,EC=b,PA,BC的公垂線EF=h,求三棱錐的體積

48.解不等式組

49.已知向量a=(1,2),b=(x,1),μ=a+2b,v=2a-b且μ//v;求實(shí)數(shù)x。

50.化簡(jiǎn)a2sin(-1350°)+b2tan405°-(a-b)2cot765°-2abcos(-1080°)

51.設(shè)函數(shù)是奇函數(shù)(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)當(dāng)x<0時(shí),判斷f(x)的單調(diào)性并加以證明.

52.已知拋物線y2=4x與直線y=2x+b相交與A,B兩點(diǎn),弦長(zhǎng)為,求b的值。

五、解答題(10題)53.如圖,在四棱錐P-ABCD中,PC丄平面ABCD,AB//DC,DC丄AC.(1)求證:DC丄平面PAC;(2)求證:平面PAB丄平面PAC.

54.已知圓C的圓心在直線y=x上,半徑為5且過(guò)點(diǎn)A(4,5),B(1,6)兩點(diǎn).(1)求圓C的方程;(2)過(guò)點(diǎn)M(-2,3)的直線l被圓C所截得的線段的長(zhǎng)為8,求直線l的方程.

55.已知圓C:(x-1)2+y2=9內(nèi)有一點(diǎn)P(2,2),過(guò)點(diǎn)P作直線l交圓C于A、B兩點(diǎn).(1)當(dāng)直線l過(guò)圓心C時(shí),求直線l的方程;(2)當(dāng)直線l的傾斜角為45°時(shí),求弦AB的長(zhǎng).

56.

57.已知等比數(shù)列{an}的公比q==2,且a2,a3+1,a4成等差數(shù)列.⑴求a1及an;(2)設(shè)bn=an+n,求數(shù)列{bn}前5項(xiàng)和S5.

58.

59.某化工廠生產(chǎn)的某種化工產(chǎn)品,當(dāng)年產(chǎn)量在150噸至250噸之內(nèi),其年生產(chǎn)的總成本:y(萬(wàn)元)與年產(chǎn)量x(噸)之間的關(guān)系可近似地表示為y=x2/10-30x+400030x+4000.(1)當(dāng)年產(chǎn)量為多少噸時(shí),每噸的平均成本最低,并求每噸最低平均成本;(2)若每噸平均出廠價(jià)為16萬(wàn)元,求年生產(chǎn)多少噸時(shí),可獲得最大的年利潤(rùn),并求最大年利潤(rùn).

60.

61.已知等比數(shù)列{an},a1=2,a4=16.(1)求數(shù)列{an}的通項(xiàng)公式;(2)求數(shù)列{nan}的前n項(xiàng)和{Sn}.

62.已知A,B分別是橢圓的左右兩個(gè)焦點(diǎn),o為坐標(biāo)的原點(diǎn),點(diǎn)P(-1,)在橢圓上,線段PB與y軸的焦點(diǎn)M為線段PB的中心點(diǎn),求橢圓的標(biāo)準(zhǔn)方程

六、單選題(0題)63.A.3

B.8

C.

參考答案

1.A

2.D程序框圖的運(yùn)算.因x=-5,不滿足>0,所以在第一個(gè)判斷框中

3.A

4.B

5.A

6.B已知函數(shù)是指數(shù)函數(shù),當(dāng)a在(0,1)范圍內(nèi)時(shí)函數(shù)單調(diào)遞減,所以選B。

7.B集合的運(yùn)算.∵A={x|1≤x≤5},Z為整數(shù)集,則A∩Z={1,2,3,4,5}.

8.B由題可知AB={3,4,5},所以其補(bǔ)集為{1,2,6,7}。

9.D函數(shù)奇偶性和單調(diào)性的判斷.奇函數(shù)只有B,D,而B(niǎo)不是增函數(shù).

10.C

11.D

12.A

13.A同底時(shí),當(dāng)?shù)讛?shù)大于0小于1時(shí),減函數(shù);當(dāng)?shù)讛?shù)大于1時(shí),增函數(shù),底數(shù)越大值越大。

14.C

15.D圓的切線方程的性質(zhì).圓方程可化為C(x-l)2+(y-1)2=1,∴該圓是以(1,1)為圓心,以1為半徑的圓,∵直線3x+4y=

16.D函數(shù)奇偶性的應(yīng)用.f(-1)=2(-1)2-(―1)=3.

17.B

18.C古典概型.任意取到兩個(gè)數(shù)的方法有6種:1,2;1,3;1,4;2,3;2,4;3,4;,滿足題意的有1種:1,3;則要求的概率為1/6.

19.D

20.C直線與平面垂直的判定.由已知,α∩β=L,所以L包含于β,又因?yàn)閚⊥β,所以n⊥L.

21.D

22.A平面向量的線性運(yùn)算∵a⊥b,∴b=sinθ-2cosθ=0,∴tanθ=2.

23.-1

24.45程序框圖的運(yùn)算.當(dāng)n=1時(shí),a=15;當(dāng)時(shí),a=30;當(dāng)n=3,a=45;當(dāng)n=4不滿足循環(huán)條件,退出循環(huán),輸出a=45.

25.

,以直線b和A作平面,作P在該平面上的垂點(diǎn)D,作DC垂直b于C,則有PD=,BD=4,DC=2,因此PC=,(PC為垂直于b的直線).

26.{-1,0,1,2}

27.

28.72

29.

復(fù)數(shù)的模的計(jì)算.

30.-5或3

31.10函數(shù)值的計(jì)算.由=3,解得a=10.

32.

33.解:實(shí)半軸長(zhǎng)為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為

34.

35.

36.解:(1)設(shè)所求直線l的方程為:2x-y+c=0∵直線l過(guò)點(diǎn)(3,2)∴6-2+c=0即c=-4∴所求直線l的方程為:2x-y-4=0(2)∵當(dāng)x=0時(shí),y=-4∴直線l在y軸上的截距為-4

37.

38.

39.

40.

41.

42.

43.

44.∵(1)這條弦與拋物線兩交點(diǎn)

45.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2

46.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)

∴數(shù)列為首項(xiàng)b1=32,q=16的等比數(shù)列

47.

48.x2-6x+8>0,∴x>4,x<2(1)(2)聯(lián)系(1)(2)得不等式組的解集為

49.

∵μ//v∴(2x+1.4)=(2-x,3)得

50.原式=

51.

∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴

∴得0<b<∵b∈Z∴b=1∴(2)設(shè)-1<<<0∵

若時(shí)

故當(dāng)X<-1時(shí)為增函數(shù);當(dāng)-1≤X<0為減函數(shù)

52.

53.(1)∵PC丄平面ABCD,DC包含于平面ABCD,∴PC丄DC.又AC丄DC,PC∩AC=C,PC包含于平面PAC,AC包含于平面PAC,∴CD丄平面PAC.(2)證明∵AB//CD,CD丄平面PAC,∴AB丄平面PAC,AB包含于平面PAB,∴平面PAB丄平面PAC.

54.(1)由題意,設(shè)圓心坐標(biāo)為(a,a),則(a,-1)2+(a-6)2=(a-4)2+(a-5)2=25,a=1;所以圓C的方程(x-1)2+(y-1)2=25.

55.

56.

57.(1)由題可得2a3+2=a2+a4,所以2×a1×22+2=a1×2+a1×23所以a1=1,an=1×2n+1=2n-1(2)bn=2n-1+n,S5=1+2+3+4+5+1+2+4+8+16=46.

58.

59.(1)設(shè)每噸的平均成本

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論